Compact operators on the Bergman space of multiply-connected domains
HTML articles powered by AMS MathViewer
- by Roberto Raimondo
- Proc. Amer. Math. Soc. 129 (2001), 739-747
- DOI: https://doi.org/10.1090/S0002-9939-00-05718-X
- Published electronically: September 19, 2000
- PDF | Request permission
Abstract:
If $\Omega$ is a smoothly bounded multiply-connected domain in the complex plane and $A=\sum _{j=1}^m\prod _{k=1}^{m_j}T_{\varphi _{j,k}},$ where $\varphi _{j,k}\in L^\infty ({\Omega },d{\nu }),$ we show that $A$ is compact if and only if its Berezin transform vanishes at the boundary.References
- Jonathan Arazy, Membership of Hankel operators on planar domains in unitary ideals, Analysis at Urbana, Vol. I (Urbana, IL, 1986–1987) London Math. Soc. Lecture Note Ser., vol. 137, Cambridge Univ. Press, Cambridge, 1989, pp. 1–40. MR 1009167
- Sheldon Axler and Dechao Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J. 47 (1998), no. 2, 387–400. MR 1647896, DOI 10.1512/iumj.1998.47.1407
- F. A. Berezin, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134–1167 (Russian). MR 0350504
- Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893
- G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR 0247039
- Huiping Li, Hankel operators on the Bergman space of multiply connected domains, J. Operator Theory 28 (1992), no. 2, 321–335. MR 1273049
- Norberto Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149–158. MR 294694, DOI 10.1007/BF01419622
- Bernard Russo, On the Hausdorff-Young theorem for integral operators, Pacific J. Math. 68 (1977), no. 1, 241–253. MR 500308
Bibliographic Information
- Roberto Raimondo
- Affiliation: Department of Economics, University of California at Berkeley, Evans Hall, Berkeley, California 94720
- Email: raimondo@econ.berkeley.edu
- Received by editor(s): May 4, 1999
- Published electronically: September 19, 2000
- Communicated by: Joseph A. Ball
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 739-747
- MSC (2000): Primary 47B35
- DOI: https://doi.org/10.1090/S0002-9939-00-05718-X
- MathSciNet review: 1801999