Analytic norms in Orlicz spaces
HTML articles powered by AMS MathViewer
- by P. Hájek and S. Troyanski
- Proc. Amer. Math. Soc. 129 (2001), 713-717
- DOI: https://doi.org/10.1090/S0002-9939-00-05773-7
- Published electronically: November 8, 2000
- PDF | Request permission
Abstract:
It is shown that an Orlicz sequence space $h_M$ admits an equivalent analytic renorming if and only if it is either isomorphic to $l_{2n}$ or isomorphically polyhedral. As a consequence, we show that there exists a separable Banach space admitting an equivalent $C^\infty$-Fréchet norm, but no equivalent analytic norm.References
- R. M. Aron, C. Hervés, and M. Valdivia, Weakly continuous mappings on Banach spaces, J. Functional Analysis 52 (1983), no. 2, 189–204. MR 707203, DOI 10.1016/0022-1236(83)90081-2
- Robert Bonic and John Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877–898. MR 0198492
- Robert Deville, Geometrical implications of the existence of very smooth bump functions in Banach spaces, Israel J. Math. 67 (1989), no. 1, 1–22. MR 1021357, DOI 10.1007/BF02764895
- Robert Deville, Vladimir Fonf, and Petr Hájek, Analytic and polyhedral approximation of convex bodies in separable polyhedral Banach spaces, Israel J. Math. 105 (1998), 139–154. MR 1639743, DOI 10.1007/BF02780326
- V. Fonf, One property of Lindenstrauss-Phelps spaces, Functional Anal. Appl. 13 (1979), 66–67.
- Raquel Gonzalo, Upper and lower estimates in Banach sequence spaces, Comment. Math. Univ. Carolin. 36 (1995), no. 4, 641–653. MR 1378687
- Raquel Gonzalo and Jesús Angel Jaramillo, Smoothness and estimates of sequences in Banach spaces, Israel J. Math. 89 (1995), no. 1-3, 321–341. MR 1324468, DOI 10.1007/BF02808207
- Petr Hájek, Analytic renormings of $C(K)$ spaces, Serdica Math. J. 22 (1996), no. 1, 25–28. MR 1397698
- Petr Hájek, Smooth norms that depend locally on finitely many coordinates, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3817–3821. MR 1285993, DOI 10.1090/S0002-9939-1995-1285993-3
- Petr Hájek, Smooth functions on $C(K)$, Israel J. Math. 107 (1998), 237–252. MR 1658563, DOI 10.1007/BF02764011
- Denny H. Leung, Some isomorphically polyhedral Orlicz sequence spaces, Israel J. Math. 87 (1994), no. 1-3, 117–128. MR 1286820, DOI 10.1007/BF02772988
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253
- R. P. Maleev, Norms of best smoothness in Orlicz spaces, Z. Anal. Anwendungen 12 (1993), no. 1, 123–135. MR 1239433, DOI 10.4171/ZAA/576
- R. P. Maleev and S. L. Troyanski, Smooth functions in Orlicz spaces, Banach space theory (Iowa City, IA, 1987) Contemp. Math., vol. 85, Amer. Math. Soc., Providence, RI, 1989, pp. 355–370. MR 983394, DOI 10.1090/conm/085/983394
- R. P. Maleev and S. L. Troyanski, Smooth norms in Orlicz spaces, Canad. Math. Bull. 34 (1991), no. 1, 74–82. MR 1108932, DOI 10.4153/CMB-1991-012-7
- S. S. Pillai, On normal numbers, Proc. Indian Acad. Sci., Sect. A. 10 (1939), 13–15. MR 0000020
- A. Pełczyński and W. Szlenk, An example of a non-shrinking basis, Rev. Roumaine Math. Pures Appl. 10 (1965), 961–966. MR 203432
- J. Schreier, Ein Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930), 58–62.
Bibliographic Information
- P. Hájek
- Affiliation: Departamento Análisis Matemático, Universidad Complutense de Madrid, 28040 Madrid, Spain and Mathematical Institute, Czech Academy of Science, Žitná 25, Prague, Czech Republic
- Address at time of publication: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Email: phajek@math.tamu.edu
- S. Troyanski
- Affiliation: Departmento Análisis Matemático, Universidad Complutense de Madrid, 28040 Madrid, Spain and Department of Mathematics and Informatics, Sofia University, 5, James Bourchier Blvd., 1126 Sofia, Bulgaria
- MR Author ID: 174580
- Received by editor(s): March 30, 1998
- Received by editor(s) in revised form: November 25, 1998
- Published electronically: November 8, 2000
- Additional Notes: The second author was partially supported by NFSR of Bulgaria, Grant MM-808-98
- Communicated by: Dale Alspach
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 713-717
- MSC (2000): Primary 46B03, 46B45
- DOI: https://doi.org/10.1090/S0002-9939-00-05773-7
- MathSciNet review: 1801996