Almost periodic hyperfunctions
HTML articles powered by AMS MathViewer
- by Jaeyoung Chung, Soon-Yeong Chung, Dohan Kim and Hee Jung Kim
- Proc. Amer. Math. Soc. 129 (2001), 731-738
- DOI: https://doi.org/10.1090/S0002-9939-00-05800-7
- Published electronically: August 30, 2000
- PDF | Request permission
Abstract:
We characterize the almost periodic hyperfunctions by showing that the following statements are equivalent for any bounded hyperfunction $T$. (i) $T$ is almost periodic. (ii) $T*\varphi \in C_{ap}$ for every $\varphi \in \mathcal {F}$. (iii) There are two functions $f,g \in C_{ap}$ and an infinite order differential operator $P$ such that $T=P(D^{2})f+g.$ (iv) The Gauss transform $u(x,t)=T*E(x,t)$ of $T$ is almost periodic for every $t>0$. Here $C_{ap}$ is the space of almost periodic continuous functions, $\mathcal {F}$ is the Sato space of test functions for the Fourier hyperfunctions, and $E(x,t)$ is the heat kernel. This generalizes the result of Schwartz on almost periodic distributions and that of Cioranescu on almost periodic (non-quasianalytic) ultradistributions to the case of hyperfunctions.References
- Ioana Cioranescu, On the abstract Cauchy problem in spaces of almost periodic distributions, J. Math. Anal. Appl. 148 (1990), no. 2, 440–462. MR 1052355, DOI 10.1016/0022-247X(90)90012-5
- Ioana Cioranescu, The characterization of the almost periodic ultradistributions of Beurling type, Proc. Amer. Math. Soc. 116 (1992), no. 1, 127–134. MR 1111214, DOI 10.1090/S0002-9939-1992-1111214-5
- Soon-Yeong Chung and Dohan Kim, Representation of quasianalytic ultradistributions, Ark. Mat. 31 (1993), no. 1, 51–60. MR 1230264, DOI 10.1007/BF02559497
- S.-Y. Chung, D. Kim and E. G. Lee, Periodic hyperfunctions and Fourier series, Proc. Amer. Math. Soc. 128 (2000), 2421–2430.
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
- Hikosaburo Komatsu, Ultradistributions. I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25–105. MR 320743
- Kwang Whoi Kim, Soon-Yeong Chung, and Dohan Kim, Fourier hyperfunctions as the boundary values of smooth solutions of heat equations, Publ. Res. Inst. Math. Sci. 29 (1993), no. 2, 289–300. MR 1211781, DOI 10.2977/prims/1195167274
- Tadato Matsuzawa, A calculus approach to hyperfunctions. II, Trans. Amer. Math. Soc. 313 (1989), no. 2, 619–654. MR 997676, DOI 10.1090/S0002-9947-1989-0997676-7
- Laurent Schwartz, Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, IX-X, Hermann, Paris, 1966 (French). Nouvelle édition, entiérement corrigée, refondue et augmentée. MR 0209834
- D. V. Widder, The heat equation, Pure and Applied Mathematics, Vol. 67, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0466967
Bibliographic Information
- Jaeyoung Chung
- Affiliation: Department of Mathematics, Kunsan National University, Kunsan 573–360, Korea
- Email: jychung@ks.kunsan.ac.kr
- Soon-Yeong Chung
- Affiliation: Department of Mathematics, Sogang University, Seoul 121–742, Korea
- Email: sychung@ccs.sogang.ac.kr
- Dohan Kim
- Affiliation: Department of Mathematics, Seoul National University, Seoul 151–742, Korea
- Email: dhkim@math.snu.ac.kr
- Hee Jung Kim
- Affiliation: Department of Mathematics, Seoul National University, Seoul 151–742, Korea
- Email: ciel@math.snu.ac.kr
- Received by editor(s): May 4, 1999
- Published electronically: August 30, 2000
- Additional Notes: The first and second authors were partially supported by KOSEF (1999-2-101-001-5). The third and fourth authors were partially supported by BK21
- Communicated by: Jonathan M. Borwein
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 731-738
- MSC (1991): Primary 46F15, 35K05, 42B05
- DOI: https://doi.org/10.1090/S0002-9939-00-05800-7
- MathSciNet review: 1792186