On function and operator modules
HTML articles powered by AMS MathViewer
- by David Blecher and Christian Le Merdy
- Proc. Amer. Math. Soc. 129 (2001), 833-844
- DOI: https://doi.org/10.1090/S0002-9939-00-05866-4
- Published electronically: August 30, 2000
- PDF | Request permission
Abstract:
Let $A$ be a unital Banach algebra. We give a characterization of the left Banach $A$-modules $X$ for which there exists a commutative unital $C^{*}$-algebra $C(K)$, a linear isometry $i\colon X\to C(K)$, and a contractive unital homomorphism $\theta \colon A\to C(K)$ such that $i(a\cdotp x) =\theta (a)i(x)$ for any $a\in A,\ x\in X$. We then deduce a “commutative" version of the Christensen-Effros-Sinclair characterization of operator bimodules. In the last section of the paper, we prove a $w^{*}$-version of the latter characterization, which generalizes some previous work of Effros and Ruan.References
- Erik M. Alfsen and Edward G. Effros, Structure in real Banach spaces. I, II, Ann. of Math. (2) 96 (1972), 98–128; ibid. (2) 96 (1972), 129–173. MR 352946, DOI 10.2307/1970895
- Ehrhard Behrends, $M$-structure and the Banach-Stone theorem, Lecture Notes in Mathematics, vol. 736, Springer, Berlin, 1979. MR 547509
- Ehrhard Behrends, Multiplier representations and an application to the problem whether $A\otimes _{\varepsilon }X$ determines $A$ and/or $X$, Math. Scand. 52 (1983), no. 1, 117–144. MR 697504, DOI 10.7146/math.scand.a-11999
- David P. Blecher, Commutativity in operator algebras, Proc. Amer. Math. Soc. 109 (1990), no. 3, 709–715. MR 1009985, DOI 10.1090/S0002-9939-1990-1009985-X
- David P. Blecher, Tensor products of operator spaces. II, Canad. J. Math. 44 (1992), no. 1, 75–90. MR 1152667, DOI 10.4153/CJM-1992-004-5
- David P. Blecher, The standard dual of an operator space, Pacific J. Math. 153 (1992), no. 1, 15–30. MR 1145913
- David P. Blecher, A generalization of Hilbert modules, J. Funct. Anal. 136 (1996), no. 2, 365–421. MR 1380659, DOI 10.1006/jfan.1996.0034
- D.P. Blecher, The Shilov boundary of an operator space - and the characterization theorems, Preprint (1999).
- David P. Blecher and Vern I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), no. 2, 262–292. MR 1121615, DOI 10.1016/0022-1236(91)90042-4
- David P. Blecher, Zhong-Jin Ruan, and Allan M. Sinclair, A characterization of operator algebras, J. Funct. Anal. 89 (1990), no. 1, 188–201. MR 1040962, DOI 10.1016/0022-1236(90)90010-I
- Erik Christensen, Edward G. Effros, and Allan Sinclair, Completely bounded multilinear maps and $C^\ast$-algebraic cohomology, Invent. Math. 90 (1987), no. 2, 279–296. MR 910202, DOI 10.1007/BF01388706
- Erik Christensen and Allan M. Sinclair, Representations of completely bounded multilinear operators, J. Funct. Anal. 72 (1987), no. 1, 151–181. MR 883506, DOI 10.1016/0022-1236(87)90084-X
- F. Cunningham Jr., $M$-structure in Banach spaces, Proc. Cambridge Philos. Soc. 63 (1967), 613–629. MR 212544, DOI 10.1017/s0305004100041591
- Andreas Defant and Klaus Floret, Tensor norms and operator ideals, North-Holland Mathematics Studies, vol. 176, North-Holland Publishing Co., Amsterdam, 1993. MR 1209438
- Edward G. Effros and Zhong-Jin Ruan, Representations of operator bimodules and their applications, J. Operator Theory 19 (1988), no. 1, 137–158. MR 950830
- Edward G. Effros and Zhong-Jin Ruan, A new approach to operator spaces, Canad. Math. Bull. 34 (1991), no. 3, 329–337. MR 1127754, DOI 10.4153/CMB-1991-053-x
- E.G. Effros and Z.-J. Ruan, Operator convolution algebras: an approach to quantum groups, Unpublished (1991).
- Krzysztof Jarosz, Multipliers in complex Banach spaces and structure of the unit balls, Studia Math. 87 (1987), no. 3, 197–213. MR 927504, DOI 10.4064/sm-87-3-197-213
- C. Le Merdy, An operator space characterization of dual operator algebras, Amer. J. Math. 121 (1999), 55-63.
- C. Le Merdy, Finite rank approximation and semidiscreteness for linear operators, Annales Inst. Fourier 49 (1999), 1869–1901.
- V. I. Paulsen and R. R. Smith, Multilinear maps and tensor norms on operator systems, J. Funct. Anal. 73 (1987), no. 2, 258–276. MR 899651, DOI 10.1016/0022-1236(87)90068-1
- Joseph A. Ball and Thomas L. Kriete III, Operator-valued Nevanlinna-Pick kernels and the functional models for contraction operators, Integral Equations Operator Theory 10 (1987), no. 1, 17–61. MR 868573, DOI 10.1007/BF01199793
- G. Pisier, An introduction to the theory of operator spaces, Preprint (1997).
- Andrew M. Tonge, Banach algebras and absolutely summing operators, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 3, 465–473. MR 438152, DOI 10.1017/S030500410005310X
Bibliographic Information
- David Blecher
- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3476
- Email: dblecher@math.uh.edu
- Christian Le Merdy
- Affiliation: Département de Mathématiques, Université de Franche-Comté, 25030 Besançon Cedex, France
- MR Author ID: 308170
- Received by editor(s): May 24, 1999
- Published electronically: August 30, 2000
- Communicated by: David R. Larson
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 833-844
- MSC (2000): Primary 47L30, 47L25; Secondary 46H25, 46J10, 46L07
- DOI: https://doi.org/10.1090/S0002-9939-00-05866-4
- MathSciNet review: 1802002