THE DIRICHLET-JORDAN TEST
AND MULTIDIMENSIONAL EXTENSIONS

MICHAEL TAYLOR

(Communicated by Christopher D. Sogge)

Abstract. If \mathcal{F} is a foliation of an open set $\Omega \subset \mathbb{R}^n$ by smooth $(n-1)$-dimensional surfaces, we define a class of functions $B(\Omega, \mathcal{F})$, supported in Ω, that are, roughly speaking, smooth along \mathcal{F} and of bounded variation transverse to \mathcal{F}. We investigate geometrical conditions on \mathcal{F} that imply results on pointwise Fourier inversion for these functions. We also note similar results for functions on spheres, on compact 2-dimensional manifolds, and on the 3-dimensional torus. These results are multidimensional analogues of the classical Dirichlet-Jordan test of pointwise convergence of Fourier series in one variable.

Suppose $f \in L^1(\mathbb{R}^n)$, with Fourier transform

$$\hat{f}(\xi) = (2\pi)^{-n/2} \int f(x)e^{-ix\cdot\xi} \, dx.$$

We set

$$S_Rf(x) = (2\pi)^{-n/2} \int_{|\xi| \leq R} \hat{f}(\xi)e^{ix\cdot\xi} \, d\xi.$$

When $n = 1$, the Dirichlet-Jordan test for pointwise convergence of $S_Rf(x)$ as $R \to \infty$ states that, if f has bounded variation, then for each $x \in \mathbb{R}$,

$$\lim_{R \to \infty} S_Rf(x) = \frac{1}{2} \lim_{\varepsilon \to 0} [f(x + \varepsilon) + f(x - \varepsilon)].$$

This can be established as follows. Pick a function $h(t)$, equal to 0 for $0 < t < 1$ for $0 < t \leq 1$, smooth on $(0, \infty)$, and equal to 0 for $t \geq 2$. Set $h(0) = 1/2$. By Riemann’s localization principle there is no loss of generality in assuming f has compact support. If f has bounded variation, its distributional derivative $f' = \mu$ is a (signed) measure, and we have

$$f(x) = \int h(x - y) \, d\mu(y) + g(x),$$

with $g \in C_0^\infty(\mathbb{R})$. If $f(x)$ is adjusted to equal the right side of (3) at each point of discontinuity, then (3) holds for all $x \in \mathbb{R}$. Then we have

$$S_Rf(x) = \int S_Rh(x - y) \, d\mu(y) + S_Rg(x).$$
Obviously \(S_{Rg}(x) \rightarrow g(x) \) for all \(x \). The Dirichlet-Jordan result can then be proven using the following two properties of \(S_{Rh} \):

\[
S_{Rh}(x) \rightarrow h(x), \quad \text{for every } x \in \mathbb{R}
\]

(including \(x = 0 \)), and, for some \(C < \infty \), independent of \(x, R \),

\[
|S_{Rh}(x)| \leq C.
\]

To establish \(\text{(6)} \), one can appeal to the Dini test, or use localization and smoothness for \(x \neq 0 \), plus a symmetrization argument to cover the case \(x = 0 \). The bound \(\text{(7)} \) is a consequence of the analysis of the Gibbs phenomenon for \(S_{Rh} \). From this, the Dirichlet-Jordan result can be deduced via Lebesgue’s dominated convergence theorem. Let us state an abstract version of this last segment of the argument.

Let \((Y, \mathcal{B})\) be a set with sigma algebra, let \(\mu \) be a finite signed measure on \(\mathcal{B} \), and let \(X \) be a set. Let \(h_R : X \times Y \rightarrow \mathbb{C} \) be given, for each \(R \in (0, \infty) \). Assume that \(h_R(x, \cdot) \) is \(\mathcal{B} \)-measurable, for each \(x \in X, R \in (0, \infty) \), that

\[
|h_R(x, y)| \leq C, \quad \forall x \in X, y \in Y, R \in (0, \infty),
\]

and that

\[
\lim_{R \rightarrow \infty} h_R(x, y) = h(x, y), \quad \forall x \in X, y \in Y.
\]

Then

\[
\lim_{R \rightarrow \infty} \int_Y h_R(x, y) \, d\mu(y) = \int_Y h(x, y) \, d\mu(y), \quad \forall x \in X.
\]

As mentioned, this is simply a consequence of the dominated convergence theorem. The role played by \(X \) here is, in essence, trivial, except for the fact that it arises in nontrivial contexts.

Multidimensional analogues of functions for which \(\text{(6)}-\text{(7)} \) hold arise as follows. Let \(\Sigma \) be a smooth \((n - 1)\)-dimensional surface in \(\mathbb{R}^n \). Let \(\mathcal{C}_1(\Sigma) \) denote the set of caustic points of order \(\geq 1 \), in the terminology used in \(\text{§10 of [PT]} \). (This follows Definition 5.2.3 of [Dm], in the case where \(\Lambda \) is the Lagrangian flow-out of the unit normal bundle of \(\Sigma \).) Let \(\mathcal{O}_\Sigma \) be an open neighborhood of \(\mathcal{C}_1(\Sigma) \). Let \(h(x) \) be a piecewise smooth function, with compact support, with simple jump across \(\Sigma \). For \(x \in \Sigma \), set \(h(x) \) equal to the mean value of its limits from each side. The fact that

\[
S_{Rh}(x) \rightarrow h(x), \quad \forall x \in \mathbb{R}^n \setminus \mathcal{O}_\Sigma,
\]

follows from Proposition 26 in \(\text{§10 of [PT]} \) (the result for \(x \in \Sigma \) holding by the analysis in \(\text{§11} \)). The fact that, for any compact \(K \subset \mathbb{R}^n \setminus \mathcal{O}_\Sigma \),

\[
|S_{Rh}(x)| \leq C_K, \quad \forall R \in (0, \infty), x \in K,
\]

follows from the analysis of the Gibbs phenomenon in \(\text{§11 of [PT]} \) (cf. also [CV]). We note that \(\mathcal{C}_1(\Sigma) \) is empty when \(n = 2 \). Also, when \(n = 3 \), \(\mathcal{C}_1(\Sigma) \) is empty if \(\Sigma \) is real analytic and not part of a sphere (as noted by [K]).

Now suppose we have a foliation of an open set \(\Omega \subset \mathbb{R}^n \) by such surfaces. More precisely, suppose we have smooth functions \(u_1, \ldots, u_n-1, v \) on \(\Omega \), producing a diffeomorphism

\[
(u_1, \ldots, u_{n-1}, v) : \Omega \rightarrow Q \subset \mathbb{R}^n,
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \(Q \) is the open cube \((-\pi, \pi) \times \cdots \times (-\pi, \pi)\). We consider the family of surfaces \(\Sigma_c = \{ x \in \Omega : v(x) = c \} \). Assume that \(\mathcal{O} \) is an open neighborhood of the union of the sets \(C_1(\Sigma_c) \). Fix \(\varphi \in C_0^\infty(\Omega) \). Let \(h_t : \Omega \to \mathbb{R} \) be given by

\[
h_t(x) = \begin{cases}
1 & \text{if } v(x) > t, \\
\frac{1}{2} & \text{if } v(x) = t, \\
0 & \text{if } v(x) < t.
\end{cases}
\]

Let \(K \) be any compact set in \(\mathbb{R}^n \setminus \mathcal{O} \). Then, for each \(g \in C^\infty(\Omega) \), we have

\[
|S_R(\varphi h_t)(x)| \leq C_K(g), \quad \forall R \in (0, \infty), x \in K, t \in I = (-\pi, \pi).
\]

Hence, if we set \(\Phi(g)(R, x, t) = S_R(\varphi h_t)(x) \), we have

\[
\Phi : C^\infty(\Omega) \to L^\infty((0, \infty) \times K \times (-\pi, \pi)).
\]

Now, if we compose this with the inclusion \(\iota : L^\infty((0, \infty) \times K \times (-\pi, \pi)) \to L^\infty_{\text{loc}}((0, \infty) \times K \times (-\pi, \pi)) \), it is easy to see that the map \(\iota \circ \Phi : C^\infty(\Omega) \to L^\infty_{\text{loc}}((0, \infty) \times K \times (-\pi, \pi)) \) is continuous. It follows that the map \(\Phi \) in (15) has closed graph. Hence, we can apply the closed graph theorem and deduce that

\[
\sup_{x \in K, t \in I, R \in (0, \infty)} |S_R(\varphi h_t)(x)| \leq C_K \| g \|_{H^\ell(\Omega)},
\]

for some finite \(\ell \). This estimate can also be demonstrated by a recollection of what makes geometrical optics constructions work, up to any given finite order, and its implementation for the analysis of the Gibbs phenomenon in [PT]. (It would be of interest to study the optimal value of \(\ell \), but we will not pursue this here. We will stipulate that \(\ell > n/2 \).)

Now, if \(\mu \) is a finite (signed) measure on \(I \) we can say that, for each \(g \in H^\ell(\Omega) \),

\[
f(x) = \int_I g(x) \varphi(x) h_t(x) \, d\mu(t) \Rightarrow S_R f(x) \to f(x), \quad \forall x \in \mathbb{R}^n \setminus \mathcal{O}.
\]

This class of synthesized functions is somewhat constrained, but it will serve as a starting point for an analysis of a much more natural class of functions, which we will now introduce.

Let \(\Omega \subset \mathbb{R}^n \) be open and let \(\mathcal{F} = \{ \Sigma_c : c \in I \} \) be a foliation of \(\Omega \) by smooth \((n-1)\)-dimensional surfaces. Let \(\mathcal{M}(\Omega) \) denote the space of finite (signed) Borel measures on \(\Omega \). We say

\[
f \in \mathcal{B}(\Omega, \mathcal{F})
\]

if \(f \) is a compactly supported element of \(L^\infty(\Omega) \) with the property that

\[
X_1 \cdots X_k f \in \mathcal{M}(\Omega),
\]

for any \(k \), and any smooth vector fields \(X_1, \ldots, X_k \) on \(\Omega \), provided that at most one of them is not tangent to \(\mathcal{F} \). One would have the same class of functions if one insisted the one exceptional vector field be \(X_1 \) (or that it be \(X_k \)). The following is our main result.

Theorem 1. Given \(f \in \mathcal{B}(\Omega, \mathcal{F}) \), there exists a Borel measurable \(\tilde{f} \), equal to \(f \) a.e., such that, as \(R \to \infty \),

\[
S_R f(x) \to \tilde{f}(x), \quad \forall x \in \mathbb{R}^n \setminus \mathcal{O},
\]

where \(\mathcal{O} \) is a neighborhood of the union of \(C_1(\Sigma_c), c \in I \).
To begin the proof, we note that $B(\Omega, \mathcal{F})$ is clearly a module over $C^\infty_0(\Omega)$. Hence, using a partition of unity, we can assume that Ω is as in (13), and $\Sigma_c = \{v = c\}$. Use the inverse of the diffeomorphism in (13) to pull f back to a compactly supported element $g \in L^\infty(Q)$, with the property on $\omega = \partial g/\partial x_n$ that
\begin{equation}
\Delta^M_T \omega \in \mathcal{M}(Q), \quad M = 0, 1, 2, \ldots,
\end{equation}
where
\begin{equation}
\Delta_T = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_{n-1}^2}.
\end{equation}
For the first $n-1$ factors of $(-\pi, \pi)$ in Q, throw in the endpoints and identify them, to regard ω as a compactly supported measure on $\mathbb{T}^{n-1} \times (-\pi, \pi)$. We have, for φ continuous on $[-\pi, \pi]$,
\begin{equation}
|\langle \varphi(t)e^{-ik\cdot x'}, \Delta^M_T \omega \rangle| \leq C_M \|\varphi\|_{L^\infty},
\end{equation}
with $x' = (x_1, \ldots, x_{n-1}) \in \mathbb{T}^{n-1}$, $k \in \mathbb{Z}^{n-1}$, so
\begin{equation}
|\langle \varphi(t)e^{-ik\cdot x'}, \omega \rangle| \leq C_M \langle k \rangle^{-M} \|\varphi\|_{L^\infty}.
\end{equation}
Hence, we have measures μ_k on $(-\pi, \pi)$, supported on $[-a, a]$ for some $a < \pi$, such that
\begin{equation}
\|\mu_k\|_{\mathcal{M}(I)} \leq C_M \langle k \rangle^{-2M}, \quad \omega = \sum_k e^{ik\cdot x'} \mu_k,
\end{equation}
where the norm denotes the total variation of μ_k. Hence
\begin{equation}
g(x', y) = \int_{-\pi}^\pi \sum_k e^{ik\cdot x'} d\mu_k(t),
\end{equation}
so
\begin{equation}
f(x) = \sum_k e^{ik\cdot u(x)} \int_{-\pi}^{v(x)} d\mu_k(t)
\end{equation}
\begin{equation}
= \varphi(x) \sum_k e^{ik\cdot u(x)} \int_{-\pi}^{v(x)} d\mu_k(t)
\end{equation}
\begin{equation}
= \sum_k \varphi(x) g_k(x) \int_{-\pi}^{v(x)} d\mu_k(t),
\end{equation}
where we choose $\varphi \in C^\infty_0(\Omega)$ equal to 1 on the support of f, and set $g_k(x) = e^{ik\cdot u(x)}$, with $u(x) = (u_1(x), \ldots, u_{n-1}(x))$. The estimates done above imply convergence in sup-norm of the infinite series, to a function $\bar{f}(x)$ equal a.e. to $f(x)$. The analysis done above also shows that, for
\begin{equation}
f_k(x) = \varphi(x) g_k(x) \int_{-\pi}^{v(x)} d\mu_k(t),
\end{equation}
we have
\begin{equation}
S_R f_k(x) \rightarrow f_k(x), \quad x \in \mathbb{R}^n \setminus \mathcal{O},
\end{equation}
and, for each compact $K \subset \mathbb{R}^n \setminus \mathcal{O}$,
\begin{equation}
\sup_{R \in (0, \infty), x \in K} |S_R f_k(x)| \leq C_K \|g_k\|_{H^1(\Omega)} \|\mu_k\|_{\mathcal{M}(I)}.
\end{equation}
Now
\[\| g_k \|_{H^\ell(\Omega)} \leq C(k)^\ell, \]
so, given \(N \), we can produce \(M = M(\ell, N) \) and apply \(\text{(26)} \) to obtain
\[\sup_{R \in (0, \infty), x \in K} |S_R f_k(x)| \leq CKN(k)^{-N}. \]
Thus, from \(\text{(27)} \), we have, for \(x_2 \in K \),
\[\lim_{R \to \infty} S_R f(x) = \sum_k f_k(x) = \hat{f}(x), \]
and the theorem is proven.

It is clear what sort of representative of the class of \(f \in B(\Omega, F) \) the function \(\hat{f}(x) \) is. If \(x_0 \in \Sigma_c \subset \Omega \), then \(\hat{f}(x_0) \) is the mean of the limit of \(\hat{f}(x) \) as \(x \to x_0 \) from within \(\{ \nu(x) > c \} \) and as \(x \to x_0 \) from within \(\{ \nu(x) < c \} \). In particular, for each \(x_0 \in \Omega \),
\[\hat{f}(x_0) = \lim_{r \searrow 0} \frac{1}{V_n r^n} \int_{|y| < r} f(x_0 + y) \, dy, \]
where \(V_n \) is the volume of the unit ball in \(\mathbb{R}^n \).

There are other Riemannian manifolds \(M \) besides \(\mathbb{R}^n \) for which there are analogues of Theorem \(\text{(1)} \) with
\[S_R f(x) = \chi_R(\sqrt{-\Delta}) f(x), \]
where \(\Delta \) is the Laplace-Beltrami operator on \(M \) and \(\chi_R(\lambda) \) is 1 for \(|\lambda| < R \), 0 for \(|\lambda| > R \), and 1/2 for \(|\lambda| = R \). One class of examples is the class of “strongly scattering manifolds,” in the terminology of \(\text{(PT)} \), \S 10. Using the “compactification” trick from \S 6 of \(\text{(PT)} \), we can extend Theorem \(\text{(1)} \) to the case where \(M \) is a sphere \(S^n \), or other compact rank-one symmetric space. Using results of \(\text{(BC)} \), we can extend Theorem \(\text{(1)} \) to compact 2-dimensional manifolds (and then \(\mathcal{O} \) is empty).

Using Theorem 5.4 of \(\text{(T)} \), we can extend Theorem \(\text{(1)} \) to the case \(M = \mathbb{T}^3 \), as long as all the leaves \(\Sigma_c \) of \(\mathcal{F} \) have nonzero Gauss curvature in \(\Omega \).

REFERENCES

