A CLASS OF UNITARILY INVARIANT NORMS ON $B(H)$

JOR-TING CHAN, CHI-KWONG LI, AND CHARLIES C. N. TU

(Communicated by David R. Larson)

Abstract. Let H be a complex Hilbert space and let $B(H)$ be the algebra of all bounded linear operators on H. For $c = (c_1, \ldots, c_k)$, where $c_1 \geq \cdots \geq c_k > 0$ and $p \geq 1$, define the $(c;p)$-norm of $A \in B(H)$ by

$$
\|A\|_{c;p} = \left(\sum_{i=1}^{k} c_i s_i(A)^p \right)^{\frac{1}{p}},
$$
where $s_i(A)$ denotes the ith s-numbers of A. In this paper we study some basic properties of this norm and give a characterization of the extreme points of its closed unit ball. Using these results, we obtain a description of the corresponding isometric isomorphisms on $B(H)$.

1. Introduction

Let H be a Hilbert space over \mathbb{C} and let $B(H)$ be the algebra of all bounded linear operators on H. When H is of finite dimension n, we shall identify $B(H)$ with M_n, the algebra of all $n \times n$ complex matrices. In the last few decades, there has been very interesting development in the theory of unitarily invariant norms and symmetrically norm ideals on $B(H)$ (see e.g. [2], [4], [5], [7], [12], [15], [16], [17], [19] and their references). We give some brief background in the following.

For a compact operator $A \in B(H)$, the ith s-number (or singular value) of A is the ith largest eigenvalue of $|A| = (A^* A)^{1/2}$, where each eigenvalue repeats according to its multiplicity. If necessary, the numbers will be appended by 0’s to form an infinite sequence. The ith s-number of A will be denoted by $s_i(A)$. Let Φ be a symmetric gauge function on $\mathbb{R}^{\dim H}$. (We refer readers to [2] and [17] for the basic definitions and properties.) Then Φ determines a symmetric norm ideal C_{Φ} of compact operators by decreeing $A \in C_{\Phi}$ if $\Phi(\{s_i(A)\}) < \infty$. Norm ideals of this type include the Schatten class and the Hilbert-Schmidt class. Moreover, $\|A\|_{\Phi} = \Phi(\{s_i(A)\})$ is a complete norm on C_{Φ}, which is unitarily invariant in the sense that $\|UAV\|_{\Phi} = \|A\|_{\Phi}$ for any unitary operators U and V. In particular, when $\dim H = n < \infty$, every symmetric gauge function defines a unitarily invariant norm on M_n. The algebras C_{Φ} and M_n under these norms have been studied extensively as mentioned before. In particular, an important topic is to describe isometric isomorphisms under these norms. In most cases, they are multiplication by unitary operators, possibly followed by transposition (see [1], [8], [13], [14], [20]).
In view of the success in the study of unitarily invariant norms on compact operators, there have been attempts to extend the results to bounded operators in \(B(H) \) that are not necessarily compact. A first step in this direction is to extend the definition of \(s \)-number, and it can be done as follows. For \(A \in B(H) \), let \(s_\infty(A) \) denote the essential norm of \(A \). Then \(s_\infty(A) \) is either an accumulation point of \(\sigma(|A|) \) or an eigenvalue of \(|A| \) of infinite multiplicity. The operator \(A \) is compact if and only if \(s_\infty(A) = 0 \). Every element of \(\sigma(|A|) \) exceeding \(s_\infty(A) \) is an eigenvalue of \(|A| \) of finite multiplicity. The \(s \)-numbers of \(A \) are defined to be the eigenvalues \(s_1(A) \geq s_2(A) \geq \cdots \) of \(|A| \), where each of them repeats according to its multiplicity. If there are only finitely many of them, we put \(s_i(A) = s_\infty(A) \) for the remaining \(i \)'s. Alternatively, one has

\[
s_i(A) = \inf\{\|A - X\|: X \in B(H) \text{ has rank } < i\}.
\]

The \(s \)-numbers of bounded operators defined above indeed enjoy many nice properties as their compact operator counterparts. In particular, they can be used to construct unitarily invariant norms on \(B(H) \). In this paper, we study the following class of unitarily invariant norms on \(B(H) \): let \(c = (c_1, \ldots, c_k) \in \mathbb{R}^k \), where \(c_1 \geq \cdots \geq c_k > 0 \), and let \(1 \leq p < \infty \). Define the \((c, p)\)-norm of an operator \(A \in B(H) \) by

\[
\|A\|_{c,p} = (c_1 s_1(A)^p + \cdots + c_k s_k(A)^p)^{1/p}.
\]

When \(p = 1 \), the norm is simply called the \(c \)-norm and is denoted by \(\| \cdot \|_c \). Further, if \(c = (1, \ldots, 1) \in \mathbb{R}^k \), the above definition reduces to the Ky-Fan \(k \)-norm. In particular, \(\|A\|_1 \) is the operator norm and will be denoted by the usual symbol \(\|A\| \). It is worth noting that the \(c \)-norm and the Ky-Fan \(k \)-norm are very useful in the study of unitarily invariant norms when \(\dim H = n < \infty \). For instance (see [12]), for every unitarily invariant norm \(N \) on \(M_n \) there is a compact set \(S \) of vectors in \(\mathbb{R}^n \) such that

\[
N(A) = \max\{\|A\|_c : c \in S\}.
\]

Thus, in a certain sense, \(c \)-norms can be viewed as the “building blocks” of unitarily invariant norms on \(M_n \). Also, it is known [3] that two matrices \(A, B \in M_n \) satisfy \(N(A) \leq N(B) \) for all unitarily invariant norms \(N \) if and only if \(\|A\|_k \leq \|B\|_k \) for all the Ky-Fan \(k \)-norms \(\| \cdot \|_k \), \(k = 1, \ldots, n \). Under suitable settings, these results can actually be extended to compact operators.

In the next section we prove some basic properties of the \((c, p)\)-norm. Then in section 3, we study the extreme points of the closed unit ball for \(\| \cdot \|_{c,p} \). The cases \(p = 1 \) and \(p > 1 \) will be discussed separately. Using the properties obtained, we are able to describe isometric isomorphisms on \(B(H) \) under these norms in the last section. They are of the form depicted earlier. In particular, this extends the result of Kadison [11] on \(B(H) \) concerning the isometries of the operator norm.

In the following discussion, we always assume that \(c = (c_1, \ldots, c_k) \) with \(c_1 \geq \cdots \geq c_k > 0 \) and \(p \geq 1 \); furthermore, we assume \(k > 1 \) so that \(\| \cdot \|_{c,p} \) is not a multiple of \(\| \cdot \| \). These assumptions prevail unless otherwise stated.
2. Basic properties of $\| \cdot \|_{c,p}$

It is easy to show that the (c,p)-norm is a unitarily invariant norm on $B(H)$ equivalent to the operator norm; namely,

$$c_1^{1/p} \| A \| \leq \| A \|_{c,p} \leq \left(\sum_{i=1}^{k} c_i \right)^{1/p} \| A \|.$$

More generally, we can compare different (c,p)-norms as shown in the following.

Proposition 2.1. Let $1 \leq p, q < \infty$, $c = (c_1, \ldots, c_k)$, $d = (d_1, \ldots, d_k)$, where $c_1 \geq \cdots \geq c_k \geq 0$, $d_1 \geq \cdots \geq d_k \geq 0$, and not both c_k and d_k are zero. Then

$$M = \max \left\{ \left(d_1 z_1^q + \cdots + d_k z_k^q \right)^{1/q} : z_1 \geq \cdots \geq z_k \geq 0, \quad c_1 z_1^p + \cdots + c_k z_k^p \leq 1 \right\}$$

is the smallest positive number satisfying

$$\| A \|_{d,q} \leq M \| A \|_{c,p} \quad \text{for all } A \in B(H).$$

In particular, if $p = q = 1$, we have

$$M = \max \left\{ (d_1 + \cdots + d_i)/(c_1 + \cdots + c_i) : 1 \leq i \leq k \right\}.$$

Proof. The general assertion follows from the fact that

$$M = \sup \{ \| A \|_{d,q} : \| A \|_{c,p} \leq 1 \}.$$

To verify the optimality, one needs only to consider a finite rank operator A with s-numbers $z_1, \ldots, z_k, 0, \ldots$ that yield the maximum M in the optimization problem.

For the particular case, let $z_k = s_k$ and $z_i = s_i - s_{i+1}$ for $i = 1, \ldots, k - 1$. Then

$$\sum_{i=1}^{k} d_i s_i = \sum_{i=1}^{k} d_i \sum_{j=i}^{k} z_j = \sum_{i=1}^{k} \left(\sum_{j=i}^{k} d_j \right) z_i$$

$$\leq \sum_{i=1}^{k} \left(M \sum_{j=1}^{i} c_j \right) z_i = M \sum_{j=1}^{k} c_j \sum_{i=j}^{k} z_i$$

$$= M \sum_{j=1}^{k} c_j s_j,$$

by the definition of M. One easily checks that M is optimal. \hfill \square

Suppose $A \in B(H)$ is compact. Then A admits a Schmidt expansion

$$A = \sum_{i=1}^{\infty} s_i(A) \langle \cdot, x_i \rangle y_i,$$

where $\{x_i\}$ and $\{y_i\}$ are orthonormal sequences. It follows that $s_i(A) = \langle A x_i, y_i \rangle$. This expansion is very useful in the study of symmetrically normed ideals (see [7], [17], [19]). In general, we have

Lemma 2.2 (cf. [6] Lemma 4.4). For every $A \in B(H)$ and $\varepsilon > 0$, there exist orthonormal sequences $\{x_i\}$ and $\{y_i\}$ in $B(H)$ such that $|\langle A x_i, y_i \rangle - s_i(A)| < \varepsilon$ for all i.
Proof. If the operator \(A \) is compact, there are orthonormal sequences \(\{x_i\} \) and \(\{y_i\} \) such that \(\langle Ax_i, y_i \rangle = s_i(A) \), as shown. In general, let \(E \) be the spectral measure for \(\|A\| \). If the projection \(E((s_\infty(A), \|A\|]) \) is of infinite rank, there are infinitely many eigenvalues for \(\|A\| \) and the same argument as in the compact case applies. Otherwise there are finitely many orthonormal vectors \(x_1, \ldots, x_n \) such that \(\|A\| x_i = s_i(A) x_i \) for \(i = 1, \ldots, n \). Choose a \(\delta, 0 < \delta < \varepsilon \) and \(s_\infty(A) - \delta > 0 \). The projection \(E((s_\infty(A) - \delta, s_\infty(A))] \) is necessarily of infinite rank. Take any orthonormal sequence \(\{x_{n+i}\} \) in \(\text{Im} \, E((s_\infty(A) - \delta, s_\infty(A))] \). We have \(\|A\| x_{n+i} - s_\infty(A) x_{n+i} \| \leq \delta \). As \(\text{Im} \, E((s_\infty(A) - \delta, s_\infty(A))] \subseteq \text{Im} \|A\| \) (Conway [3, p. 274]), which is contained in the initial space of \(U \), the sequence \(\{U x_{n+i}\} \) is orthonormal.

We have
\[
\langle Ax_{n+i}, U x_{n+i} \rangle - s_\infty(A) = \|U^* Ax_{n+i}, x_{n+i} \rangle - s_\infty(A) \|
\leq \delta < \varepsilon.
\]
The proof is complete. \(\square \)

We have the following description of the \((c, p)\)-norm, which is an extension of [7, Lemma II.4.1].

Proposition 2.3.

\[
\|A\|_{c, p} = \sup \left\{ \left(\sum_{i=1}^{k} c_i \langle Ax_i, y_i \rangle^p \right)^{1/p} : \{x_i\}_{i=1}^{k}, \{y_i\}_{i=1}^{k} \text{ are orthonormal sets in } H \right\}.
\]

Proof. Let \(\{x_i\}_{i=1}^{k} \) and \(\{y_i\}_{i=1}^{k} \) be orthonormal sets in \(H \). If \(H \) is finite-dimensional, then
\[
\left(\sum_{i=1}^{k} c_i \langle Ay_i, x_i \rangle^p \right)^{1/p} \leq \left(\sum_{i=1}^{k} c_i s_i(A)^p \right)^{1/p}.
\]

In general, let \(P \) be the projection onto \(\text{span} \{x_i, Ay_i, y_i : i = 1, \ldots, k\} \). Then by the corresponding finite-dimensional result,
\[
\left(\sum_{i=1}^{k} c_i \langle Ay_i, x_i \rangle^p \right)^{1/p} = \left(\sum_{i=1}^{k} c_i \langle PA y_i, x_i \rangle^p \right)^{1/p} \leq \left(\sum_{i=1}^{k} c_i s_i(PA)^p \right)^{1/p} \leq \left(\sum_{i=1}^{k} c_i s_i(A)^p \right)^{1/p}.
\]
The reverse inequality follows from Lemma 2.2. \(\square \)

Next, we consider some properties of the \((c, p)\)-norm in connection to the algebraic properties of operators on \(B(H) \). Recall that ([19, pp. 54-55]) for a given norm \(N \) on \(B(H) \),

(i) \(N \) is a uniform norm if \(N(AB) \leq \|A\| N(B) \) and \(N(AB) \leq N(A) \|B\| \),

(ii) \(N \) is a cross norm if \(N(A) = \|A\| \) for any rank one operator \(A \in B(H) \),

(iii) \(N \) is submultiplicative if \(N(AB) \leq N(A) N(B) \) for all \(A, B \in B(H) \); if, in addition, \(N(I) = 1 \), it is an algebra (or a ring) norm.
We have the following observations.

Proposition 2.4. Let $\| \cdot \|_{c,p}$ be a given (c,p)-norm on $B(H)$.

(a) Then $\| \cdot \|_{c,p}$ is a uniform norm,
(b) $\| \cdot \|_{c,p}$ is a cross norm if and only if $c_1 = 1$,
(c) $\| \cdot \|_{c,p}$ is submultiplicative if and only if $c_1 \geq 1$,
(d) $\| \cdot \|_{c,p}$ is an algebra norm if and only if it is the operator norm.

Proof. Parts (a) and (b) follow easily from the basic properties of s-numbers and the definition of the (c,p)-norm.

To prove (c), suppose $c_1 \geq 1$. Then for any $A, B \in B(H)$,

$$\| AB \|_{c,p} \leq \| A \| \| B \|_{c,p} \leq \| A \|_{c,p} \| B \|_{c,p}.$$

Conversely, if $c_1 < 1$, let A be a rank one operator with s-numbers $1, 0, \ldots$. Then $\| A \|_{c,p} = c_1 > c_1^2 = \| A \|_{c,p}^2$. Therefore, $\| \cdot \|_{c,p}$ is not submultiplicative.

Using Part (c), one can readily verify (d). \qed

3. Extreme operators for $\| \cdot \|_{c,p}$

Let $S_{c,p}$ denote the closed unit ball for $B(H)$ under $\| \cdot \|_{c,p}$ and let $\text{ext} S_{c,p}$ denote the set of all extreme points of $S_{c,p}$. When $p = 1$, then as usual, we suppress the index p. To describe $\text{ext} S_c$, let $r_j = \sum_{i=1}^j c_i$ and let R_j be the set of all rank j partial isometries. A maximal partial isometry is either an isometry or a co-isometry, i.e. its adjoint is an isometry. The set of all maximal partial isometries will be denoted by R_{max}. Note that when H is finite-dimensional, a complete description of $\text{ext} S_c$ is given in [L3, Theorem 2]. We include the result below for easy reference.

Lemma 3.1. Suppose $c_1 = \cdots = c_h > \cdots > c_{n-l+1} = \cdots = c_n \geq 0$ satisfy $c_2 > 0$ and $c_1 > c_n$. Then in M_n,

$$\text{ext} S_c = r_1^{-1} R_1 \cup \left(\bigcup_{h<j<n-l} r_j^{-1} R_j \right) \cup r_n^{-1} R_n.$$

If $n = h + l + 1$, the middle summand is empty.

It is somewhat interesting that the same result holds when H is infinite-dimensional if we replace R_n by R_{max}.

Theorem 3.2. Suppose $c_1 = \cdots = c_h > \cdots > c_k > 0$. Then

$$\text{ext} S_c = r_1^{-1} R_1 \cup \left(\bigcup_{h<j<k} r_j^{-1} R_j \right) \cup r_k^{-1} R_{\text{max}}.$$

If $k = h + 1$, the middle summand is empty.

We divide the proof of Theorem 3.2 into Lemma 3.3 to Lemma 3.7.

Lemma 3.3.

$$r_1^{-1} R_1 \cup \left(\bigcup_{h<j<k} r_j^{-1} R_j \right) \subseteq \text{ext} S_c.$$

Proof. Suppose $A = \langle \cdot, x \rangle y$ for $\| x \| = \| y \| = 1$ and $r_1^{-1} A = \frac{1}{2} (B + C)$ for $B, C \in S_c$. For every rank n ($n > k$) projection P and Q with $x \in \text{Im} P$ and $y \in \text{Im} Q$, we have

$$r_1^{-1} A = r_1^{-1} QAP = \frac{1}{2} (QBP + QCP).$$

Since $\|QBP\|_c, \|QCP\|_c \leq 1$, we conclude from Lemma 3.1 that $QBP = QCP = r_i^{-1}A$. As P and Q are arbitrary, $B = C = r_i^{-1}A$.

Similarly, if $A \in \bigcup_{h<j<k} r_j^{-1}R_j$, then $r_j^{-1}A \in \text{ext } S_c$. \qed

Using a similar argument, we get

Lemma 3.4.

$$r_k^{-1}I \in \text{ext } S_c.$$

Lemma 3.5.

$$r_k^{-1}R_{\text{max}} \subseteq \text{ext } S_c.$$

Proof. Suppose U is an isometry and $r_k^{-1}U = \frac{1}{2}(C + D)$ for C, D in S_c. Multiplying both sides by U^*, we get $r_k^{-1}I = \frac{1}{2}(U^*C + U^*D)$. By Lemma 3.3, $r_k^{-1}I = U^*C$. If $C \neq r_k^{-1}U$, there is a unit vector $x \in H$ such that $(C - r_k^{-1}U)x = y \neq 0$. As $U^*C = r_k^{-1}I, (C - r_k^{-1}U)x \perp r_k^{-1}Ux$ and hence

$$\|Cx\|^2 = \|(C - r_k^{-1}U)x + r_k^{-1}Ux\|^2$$

$$= \|(C - r_k^{-1}U)x\|^2 + r_k^{-2}\|Ux\|^2$$

$$= \|y\|^2 + r_k^{-2}$$

$$> r_k^{-2}.$$

Take an orthonormal set $\{x_1, \ldots, x_k\}$ in H with $x_1 = x$ and let $y_1 = \frac{Cx}{\|Cx\|}$, $y_i = Ux_i$ for $i = 2, \ldots, k$. Then $\{y_1, \ldots, y_k\}$ is also an orthonormal set. In fact for $i = 2, \ldots, k$,

$$\langle y_1, y_i \rangle = \frac{1}{\|Cx\|} \langle Cx, Ux_i \rangle$$

$$= \frac{1}{\|Cx\|} \langle U^*Cx, x_i \rangle$$

$$= \frac{1}{r_k\|Cx\|} \langle x, x_i \rangle$$

$$= 0.$$

But then

$$\|C\|_c \geq \sum_{i=1}^{k} c_i |\langle Cx_i, y_i \rangle|$$

$$= c_1 |\langle Cx_1, y_1 \rangle| + \sum_{j=2}^{k} c_i |\langle Cx_i, x_i \rangle|$$

$$= c_1 \|Cx\| + \sum_{j=2}^{k} c_i |\langle U^*Cx_i, x_i \rangle|$$

$$> c_1 r_k^{-1} + \left(\sum_{i=2}^{k} c_i \right) r_k^{-1}$$

$$= 1,$$

contradicting $C \in S_c$. Hence $r_k^{-1}U = C = D$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
If U is a co-isometry, then U^* is an isometry. One can use the same argument to prove $r_k^{-1}U \in \text{ext} \mathcal{S}_c$. □

Lemma 3.6. If $A \in \text{ext} \mathcal{S}_c$ is a scalar multiple of a partial isometry, then

$$A \in r_1^{-1}R_1 \cup \left(\bigcup_{h<j<k} r_j^{-1}R_j \right) \cup r_k^{-1}R_{\max}.$$

Proof. First of all, by Lemma 3.1, if A is of finite rank, then $A \in r_1^{-1}R_1 \cup \left(\bigcup_{h<j<k} r_j^{-1}R_j \right)$. If A is of infinite rank, then $A = r_k^{-1}U$ for a partial isometry U. We claim that U is maximal. Otherwise both subspaces ker U and (Im U)$^\perp$ are non-zero. Take unit vectors $x \in \ker U$, $y \in (\text{Im} U)^\perp$ and consider the operator $B = \langle \cdot, x \rangle y$. For small enough $\varepsilon > 0$, we have $\|A \pm \varepsilon B\|_c = 1$. This contradicts $A \in \text{ext} \mathcal{S}_c$. □

Lemma 3.7. Every $A \in \text{ext} \mathcal{S}_c$ is a scalar multiple of a partial isometry.

Proof. Suppose $A \in \text{ext} \mathcal{S}_c$. We shall prove that $\sigma(|A|) \subseteq \{0, \|A\|\}$ and hence A is a scalar multiple of a partial isometry. If every non-zero element in $\sigma(|A|)$ is an eigenvalue of $|A|$, then by \mathbb{S} Lemma 1, the assertion is true. Otherwise $s_\infty(A) \neq 0$ is an accumulation point of $\sigma(|A|)$. There is an $\varepsilon > 0$ such that

$$\sigma(|A|) \cap (0, s_\infty(A) - \varepsilon) \neq \emptyset.$$

Let

$$f(t) = \begin{cases} 2t & \text{if } 0 \leq t < (s_\infty - \varepsilon)/2, \\ s_\infty - \varepsilon & \text{if } (s_\infty - \varepsilon)/2 \leq t < s_\infty - \varepsilon, \\ t & \text{if } s_\infty - \varepsilon \leq t \leq \|A\|, \end{cases}$$

and $g(x) = 2t - f(t)$. Then $f(|A|) \neq g(|A|)$. By the spectral mapping theorem,

$$\sigma(f(|A|)) \cap [s_\infty(A) - \varepsilon, \|A\|] = \sigma(g(|A|)) \cap [s_\infty(A) - \varepsilon, \|A\|] = \sigma(|A|) \cap [s_\infty(A) - \varepsilon, \|A\|],$$

and hence $s_\infty(A)$ is an accumulation point of both $\sigma(f(|A|))$ and $\sigma(g(|A|))$. We conclude that $\|f(|A|)\|_c = \|g(|A|)\|_c = 1$. Now $|A| = \frac{1}{2}(f(|A|) + g(|A|))$. If $A = U|A|$ is the polar decomposition of A, then $A = \frac{1}{2}(Uf(|A|) + Ug(|A|))$. As $\text{Im} f(|A|), \text{Im} g(|A|) \subseteq \overline{\text{Im} |A|}$, which is the initial space of U, we have $Uf(|A|) \neq Ug(|A|)$. This contradicts the fact that $A \in \text{ext} \mathcal{S}_c$. □

A refinement of the notion of an extreme point is the following. Let Q be a convex subset of a normed linear space X. A point $q \in Q$ is called an exposed point of Q if there is a bounded \mathbb{R}-linear functional $f : X \to \mathbb{R}$ such that $f(q) > f(p)$ for every $q \in Q \setminus \{q\}$. An exposed point q is said to be strongly exposed if for every sequence $\{q_n\}$ in Q such that $f(q_n) \to f(q)$, we have $q_n \to q$. Clearly an exposed point is an extreme point of Q.

Grzaślewicz [9, Theorem 2] showed that under the operator norm, the closed unit ball for $B(H)$ does not have any strongly exposed point. We shall show that in the $\| \cdot \|_c$ case, an extreme point of \mathcal{S}_c is strongly exposed if and only if it is of finite rank.

Theorem 3.8. Let $A \in \text{ext} \mathcal{S}_c$. Then A is a strongly exposed point of \mathcal{S}_c if and only if $A \in r_1^{-1}R_1 \cup \left(\bigcup_{h<j<k} r_j^{-1}R_j \right)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Suppose \(A \in r_k^{-1} U \) is a strongly exposed point of \(S_c \). Then it is easy to see that \(U \) is a strongly exposed point of the closed unit ball for the operator norm. This contradicts \cite{9} Theorem 2] mentioned above.

For finite rank extreme points, we shall show that every \(A \in \bigcup_{h \leq j < k} r_j^{-1} R_j \) is a strongly exposed point of \(S_c \). The proof for \(A \in r_1^{-1} R_1 \) is similar.

Suppose \(A = r_j^{-1} \sum_{i=1}^j \langle x_i, y_i \rangle y_i \) for orthonormal sets \(\{ x_i \} \) and \(\{ y_i \} \). Define \(f : B(H) \to \mathbb{R} \) by

\[
f(F) = r_j \sum_{i=1}^j \text{Re} \langle Fx_i, y_i \rangle \quad \text{for all } F \in B(H).
\]

The functional \(f \) exposes \(A \) in \(S_c \). Indeed, \(f(A) = j \) and for any \(F \in S_c \),

\[
c_1|\langle Fx_1, y_1 \rangle| + \cdots + c_j|\langle Fx_j, y_j \rangle| \leq 1,
\]

\[
(1)
\]

(1) The functional \(f \) exposes \(A \) in \(S_c \). Indeed, \(f(A) = j \) and for any \(F \in S_c \),

\[
c_1|\langle Fx_1, y_1 \rangle| + \cdots + c_j|\langle Fx_j, y_j \rangle| \leq 1.
\]

Summing up the \(j \) inequalities, we get \(f(F) \leq r_j \sum_{i=1}^j |\langle Fx_i, y_i \rangle| \leq j \).

If \(f(F) = j \) for \(F \in S_c \), then \(\text{Re} \langle Fx_i, y_i \rangle = |\langle Fx_i, y_i \rangle| \) for all \(i \), and all inequalities in (1) become equalities. Since \(c_1 > c_j \), all \(\langle Fx_i, y_i \rangle \) are equal and have the value \(r_j^{-1} \). Let \(P \) and \(Q \) be projections onto the subspaces \(\text{span} \{ x_1, \ldots, x_j \} \) and \(\text{span} \{ y_1, \ldots, y_j \} \) respectively. Applying \cite{10} Theorem 4.3.26] to the operator \(QFP \), we get

\[
s_1(F) + s_2(F) \geq 2r_j^{-1},
\]

\[
s_1(F) + \cdots + s_j(F) \geq j r_j^{-1}.
\]

On the other hand, we may replace each \(|\langle Fx_i, y_i \rangle| \) by \(s_i(F) \) in (1) to get \(r_j \sum_{i=1}^j s_i(F) \leq j \). Hence \(r_j \sum_{i=1}^j s_i(F) = j \). Again, as \(c_1 > c_j \), all \(s_i(F) \) are equal to \(r_j^{-1} \). The other \(s \)-numbers must be zero. As \(\langle Fx_i, y_i \rangle = s_i(F) = r_j^{-1} \) for all \(i, \ F = A \) by the following version of \cite{13} Lemma 4):

Lemma 3.9. Let \(F \in B(H) \) be of finite rank \(n \). If for orthonormal sets \(\{ x_1, \ldots, x_n \} \) and \(\{ y_1, \ldots, y_n \} \), \(\langle Fx_i, y_i \rangle = s_i(F) \) for every \(i \), then

\[
F = \sum_{i=1}^n s_i(F) \langle \cdot, x_i \rangle y_i.
\]

We now show that \(A \) is strongly exposed. It is a modification of the preceding argument. Let \(\{ A_n \} \) be a sequence in \(S_c \) such that \(f(A_n) \to f(A) \), or

\[
r_j \sum_{i=1}^j \text{Re} \langle A_n x_i, y_i \rangle \to j.
\]

Replacing \(F \) by \(A_n \) in system (1) above, we get

\[
r_j \sum_{i=1}^j |\langle A_n x_i, y_i \rangle| \to j.
\]
Indeed for each i, $\langle A_n x_i, y_i \rangle \to r_j^{-1}$. This is obtained by showing that every convergent subsequence of $\{ \langle A_n x_i, y_i \rangle \}$ has limit r_j^{-1}. Again let P and Q be projections onto the subspaces span $\{x_1, \ldots, x_j\}$ and span $\{y_1, \ldots, y_j\}$ respectively. Then $\| (I - Q) A_n (I - P) \| \to 0$; otherwise $\| A_n \|_c > 1$ for some large n. We claim that $Q A_n P \to A$, $(I - Q) A_n P$ and $Q A_n (I - P) \to 0$, and hence $A_n \to A$.

Note that all the $Q A_n P$’s are (essentially) mappings between fixed finite-dimensional spaces. To show $Q A_n P \to A$, we need only show that A is the only accumulation point. For simplicity, let $Q A_n P \to B$. Then $\langle B x_i, y_i \rangle = r_j^{-1}$ for all i. It is also clear that $\| B \|_c \leq 1$ and a similar argument as for F above shows that $B = A$. If $(I - Q) A_n P \not\to 0$, there exist an $\varepsilon > 0$ and a sufficiently large n such that $\| (I - Q) A_n P \| > \varepsilon$ and $\langle A_n x_i, y_i \rangle > r_j^{-1} - \varepsilon'$ (to be determined) for all i. Without loss of generality we may assume that there is a unit vector y, orthogonal to all y_i’s, such that $| \langle A_n x_1, y \rangle | > \varepsilon$. Let

$$y'_1 = \frac{\langle A_n x_1, y_1 \rangle y + \langle A_n x_1, y \rangle y}{\sqrt{\| (A_n x_1, y_1) \|^2 + \| (A_n x_1, y) \|^2}}.$$

Then $\langle A_n x_1, y'_1 \rangle > \sqrt{(r_j^{-1} - \varepsilon')^2 + \varepsilon^2}$. Choosing ε' small enough, we obtain by Fan’s inequality (see [12] Lemma 3)) that $\| A_n \|_c > 1$, which is a contradiction. □

For $p > 1$, we have

Theorem 3.10. An operator A is an extreme point of $S_{c,p}$ if and only if

$$A = \sum_{i=1}^j s_i \langle \cdot, x_i \rangle y_i + s_{j+1} U,$$

where $1 \leq j < k$, $\sum_{i=1}^k c_i s_i^p = 1$, where $s_i = s_{j+1}$ for $i \geq j + 1$, and U is a maximal partial isometry from $\{x_1, \ldots, x_j\}^\perp$ into $\{y_1, \ldots, y_j\}^\perp$.

Note that the above description includes A as a scalar multiple of some maximal partial isometry.

Proof. (\Leftarrow) Suppose A is of the above form with U an isometry from $\{x_1, \ldots, x_j\}^\perp$ into $\{y_1, \ldots, y_j\}^\perp$. We shall show that A is an extreme point of $S_{c,p}$. Let $A = \frac{1}{2} (B + C)$ for $B, C \in S_{c,p}$. Take an orthonormal set $S_1 = \{x_1, \ldots, x_j, \ldots, x_k\}$. The set $S_2 = \{y_1, \ldots, y_j, U x_{j+1}, \ldots, U x_k\}$ is also orthonormal. Let P and Q be projections onto span S_1 and span S_2 respectively. We have

$$Q A P = \sum_{i=1}^j s_i \langle \cdot, x_i \rangle + s_{j+1} \sum_{i=j+1}^k \langle \cdot, x_i \rangle U x_i,$$

and $Q A P = \frac{1}{2} (Q B P + Q C P)$. As the (c,p)-norm on M_k is strictly convex (this is essentially strict convexity of C_k under p-norm), $Q B P = Q C P = Q A P$. If R denotes the projection onto span $\{(y_1, \ldots, y_j) \cup \Im U\}$, we conclude that $R B = R C = A$. Now $s_i = s_i(RB) \leq s_i(B)$ for all i. As

$$1 \geq \sum_{i=1}^k c_i s_i(B)^p \geq \sum_{i=1}^k c_i s_i^p = 1,$$

$s_i(B) = s_i$ for all i. We have $(I - R) B = 0$, or $B = A$. Similarly, $C = A$. If U is a co-isometry, the same argument shows that A is also an extreme point of $S_{c,p}$. □
(⇒) Let $A \in \text{ext } S_{c,p}$. We contend that the s-numbers eventually equal a constant, which must be $s_{\infty}(A)$. Otherwise every s-number of A is an eigenvalue of $|A|$ and there is a large $n(> k)$ for which $s_{n+1}(A) < s_n(A)$. Take a corresponding eigenvector x_{n+1} of $s_{n+1}(A)$ and let $B = \langle \cdot, x_{n+1} \rangle Ax_{n+1}$. For sufficiently small $\varepsilon > 0$, we have $\|A \pm \varepsilon B\|_{c,p} = 0$. This contradicts $A \in \text{ext } S_{c,p}$. Note that the above reasoning indeed requires $s_k(A) = s_\infty(A)$. Now a similar argument as in Lemma 3.6 shows (i) there is no other value in $\sigma(|A|)$, except perhaps 0, and (ii) A is of the required form.

4. Isometric isomorphisms for $\| \cdot \|_{c,p}$

The main result of this section is the following

Theorem 4.1. Suppose $T : B(H) \to B(H)$ is a linear isomorphism such that $\|T(A)\|_{c,p} = \|A\|_{c,p}$ for every $A \in B(H)$. Then there are unitary operators U and V such that either

$$T(A) = UAV \quad \text{for every } A \in B(H)$$

or

$$T(A) = UAV \quad \text{for every } A \in B(H),$$

where A^t denotes the transpose of A with respect to an orthonormal basis fixed in advance.

Proof. (\iff) Clear.

(⇒) Suppose $T : B(H) \to B(H)$ is surjective and $\|T(A)\|_{c,p} = \|A\|_{c,p}$ for all A. By Rais [18] Lemma 3), T is of the given form if (and only if) T preserves maximal partial isometries. As $r_k^{-1/p}R_{\text{max}} \subseteq \text{ext } S_{c,p}$, which is fixed by T, we have to single out $r_k^{-1/p}R_{\text{max}}$ from other extreme points. For $p = 1$, the set is precisely the non-strongly exposed points and we are done. For $p > 1$, the following Lemma 4.2 concludes our proof.

Lemma 4.2. Let A be an extreme point of $S_{c,p}$. Then A is a scalar multiple of a maximal partial isometry if and only if A can be decomposed into $A = B + C$ with the property that

$$(2) \quad \|\lambda B + \mu C\|_{c,p} = \max \{|\lambda|, |\mu|\} \quad \text{for any } \lambda, \mu \in \mathbb{C}.$$

Proof. (\Rightarrow) Let $\{x_1, \ldots, x_k\}$ be an orthonormal set in H, and let $y_j = Ax_j$ for $j = 1, \ldots, k$. Set $B = \sum_{j=1}^k \langle \cdot, x_j \rangle y_j$ and $C = A - B$. One easily checks that B and C satisfy (2).

(\Leftarrow) Suppose $A = B + C$ with the said condition. By our description of extreme points of $S_{c,p}$ (Theorem 3.8), it suffices to show that $s_1(A) = s_k(A)$. Let $(\lambda, \mu) = (1, 0), (0, 1), (1, 2), (2, 1)$ in (2). We see that $\|B\|_{c,p} = \|C\|_{c,p} = 1$ and $\|A + B\|_{c,p} = \|A + C\|_{c,p} = 2$. Hence $\|A + B\|_{c,p} = \|A\|_{c,p} + \|B\|_{c,p}$. Moreover

$$\sum_{i=1}^j s_i(A + B) \leq \sum_{i=1}^j s_i(A) + \sum_{i=1}^j s_i(B) \quad (j = 1, 2, \ldots).$$
We have
\[2 = \left(c_1 s_1(A + B)^p + \cdots + c_k s_k(A + B)^p \right)^{1/p} \]
\[\leq \left(c_1 (s_1(A) + s_1(B))^p + \cdots + c_k (s_k(A) + s_k(B))^p \right)^{1/p} \]
\[\leq \left(c_1 s_1(A)^p + \cdots + c_k s_k(A)^p \right)^{1/p} + \left(c_1 s_1(B)^p + \cdots + c_k s_k(B)^p \right)^{1/p} \]
\[= 2. \]

It follows from [7, Lemma II.3.5] and Minkowski’s inequality that
\[(s_1(A), \ldots, s_k(A)) = (s_1(B), \ldots, s_k(B)) \]
and
\[(s_1(A + B), \ldots, s_k(A + B)) = 2(s_1(A), \ldots, s_k(A)) \]

If \(s_1(A) > s_k(A) \), then \(s_1(A) \) is an \(s \)-number of \(A \) of finite multiplicity, say \(l \). Clearly the largest \(s \)-numbers of \(B \) and \(A + B \) also have multiplicity \(l \). Now
\[L = \{ x \in H : \| (A + B)x \| = \| A + B \| \| x \| \} \]
is a subspace of \(H \) of dimension \(l \), and the same is true if we replace \(A + B \) by \(A \) and \(B \) respectively. Take any \(x \in L \), we have
\[2\| A \| \| x \| = \| A + B \| \| x \| = \| (A + B)x \| = \| Ax + Bx \| \leq \| Ax \| + \| Bx \| \leq 2\| A \| \| x \|. \]

Hence \(Ax = Bx \) and \(\| Ax \| = \| A \| \| x \| \). As both subspaces are of dimension \(l \),
\[L = \{ x \in H : \| Ax \| = \| A \| \| x \| \}. \]

If we substitute \(C \) for \(B \) in the above argument, we also get \(Ax = Cx \) for every \(x \in L \). But then \(Ax = (B + C)x = 2Ax \), which is a contradiction. \(\square \)

References

Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong
E-mail address: jchan@hkucc.hku.hk

Department of Mathematics, The College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795
E-mail address: ckli@math.wm.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use