COMPLETE ORTHOGONAL DECOMPOSITION
HOMOMORPHISMS BETWEEN MATRIX ORDERED
HILBERT SPACES

YASUHIDE MIURA AND KIMINAO NISHIYAMA

(Communicated by David R. Larson)

ABSTRACT. The purpose of this paper is to show that a complete order homo-
morphism and a complete orthogonal decomposition homomorphism between
the non-commutative L^2-spaces induce respectively an isomorphism and a \ast-
isomorphism between the associated reduced von Neumann algebras.

1. Introduction

In [C] Connes studied an order isomorphism on a Hilbert space and introduced an
orientable homogeneous selfdual cone to construct a von Neumann algebra. On the
other hand, Schmitt and Wittstock [SW] introduced a matrix ordered Hilbert space
to handle a non-commutative order and characterized it using the face property of
the family of selfdual cones. From the point of view of the complete positivity of
the maps on a matrix ordered Hilbert space, we showed in [M2] the relationship
between an order isomorphism or an orthogonal decomposition isomorphism de-
fined by Yamamuro [Y] and an isomorphism of a von Neumann algebra. In the
present article we shall generalize their results to the case where a complete order
homomorphism is not necessarily bijective.

We shall use the notation as introduced in [SW] with respect to the matrix
ordered standard forms.

Let M_n and $M_{n,m}$ be respectively a set of all $n \times n$ and $n \times m$ matrices over
\mathbb{C}. For a Hilbert space H and $n \in \mathbb{N}$, put $H_n = H \otimes M_n$. Let $(H, H^+_n, n \in \mathbb{N})$, where H^+_n denotes a selfdual cone in H_n, be a matrix ordered Hilbert space, and
let $(\hat{H}_n, \hat{H}^+_n, n \in \mathbb{N})$ be another one. Let h be a bounded linear map of H into \hat{H}.
A bijective linear map h is called an order isomorphism if $hH^+_n = \hat{H}^+_n$. We call
h a complete order isomorphism if $h_n H^+_n = \hat{H}^+_n$ for every $n \in \mathbb{N}$. We call h an
o.d. (orthogonal decomposition) homomorphism if h is 1-positive and $(h\xi, h\eta) = 0$
whenever $\xi, \eta \in H^+$ and $(\xi, \eta) = 0$. If h_n is an o.d. homomorphism for every $n \in \mathbb{N}$,
we call h a complete o.d. homomorphism. A bijective map h is called a complete
o.d. isomorphism if both h and h^{-1} are complete o.d. homomorphisms.

Received by the editors July 7, 1999.

2000 Mathematics Subject Classification. Primary 46L10, 46L40.

Key words and phrases. Standard form of von Neumann algebra, completely positive map,
matrix ordered Hilbert space, orthogonal decomposition homomorphism.

The first author’s research was partially supported by the Grants-in-Aid for Scientific Research,
Ministry of Education, Japan.

©2000 American Mathematical Society
From now on, let \((M, H, H_n^+, n \in \mathbb{N})\) and \((\hat{M}, \hat{H}, \hat{H}_n^+, n \in \mathbb{N})\) be matrix ordered standard forms of von Neumann algebras. Here we use the notation

\[
\text{Ad}(h) : x \in M \mapsto hxh^{-1} \in B(\hat{H})
\]

for the invertible map \(h : H \to \hat{H}\).

Throughout this paper, we assume a Hilbert space to be separable.

2. Results

The main results are as follows:

Theorem A. Let \((M, H, H_n^+, n \in \mathbb{N})\) and \((\hat{M}, \hat{H}, \hat{H}_n^+, n \in \mathbb{N})\) be matrix ordered standard forms. Suppose that \(h\) is a complete order homomorphism of \(H\) into \(\hat{H}\) with support projection \(e\) and range projection \(f\). Put \(N = M \cap \{e\}'\) and \(\hat{N} = \hat{M} \cap \{f\}'\). If \(e\) is completely positive and \(hH^+\) is a selfdual cone in the closed range space of \(h\), then we obtain the following properties:

1. \(f\) is completely positive.
2. \((eM|_{eH}, eH, e_nH_n^+, n \in \mathbb{N})\) and \((f\hat{M}|_{f\hat{H}}, f\hat{H}, f_n\hat{H}_n^+, n \in \mathbb{N})\) are matrix ordered standard forms.
3. \(h|_{eH}\) is a complete order isomorphism of \(eH\) onto \(f\hat{H}\), and \(\text{Ad}(h|_{eH})\) is an isomorphism of \(eMe\) onto \(f\hat{M}f\).

Theorem B. With \((M, H, H_n^+, n \in \mathbb{N})\) and \((\hat{M}, \hat{H}, \hat{H}_n^+, n \in \mathbb{N})\) as before, let \(h\) be a completely positive o.d. homomorphism of \(H\) into \(\hat{H}\) with support projection \(e\) and range projection \(f\). If \(h\) has the closed range, then we obtain the following properties:

1. \(e\) belongs to \(M \cap M'\).
2. \(f\) is completely positive.
3. \((f\hat{M}|_{f\hat{H}}, f\hat{H}, f_n\hat{H}_n^+, n \in \mathbb{N})\) is a matrix ordered standard form.
4. \(h|_{eH}\) is a complete o.d. isomorphism of \(eH\) onto \(f\hat{H}\), and \(\text{Ad}(h|_{eH})|_{Me}\) is a *-isomorphism of \(Me\) onto \(f\hat{M}f\).

We need some lemmata to prove Theorem A.

Lemma 1. Let \((M, H, J, H^+)\) be a standard form, and let \(\hat{H}\) be a Hilbert space with a selfdual cone \(\hat{H}^+\). Suppose that \(h\) is a linear bijection of \(H\) onto \(\hat{H}\) such that \(hH^+ = \hat{H}^+\). Then, for the polar decomposition \(h = u|h|\) of \(h\), \(u\) is a 1-positive isometry of \(H\) onto \(\hat{H}\), and there exists a positive invertible operator \(k\) in \(M\) such that \(|h| = kJkJ\).

Proof. Since for every \(\xi \in \hat{H}^+\), \((h^*\xi, \eta) = (\xi, h\eta) \geq 0\) holds for all \(\eta \in H^+\), it follows from the selfduality of \(H^+\) that \(h^*H^+ \subset H^+\). Hence \(h^*hH^+ \subset H^+\). Since \((h^{-1})^* = (h^*)^{-1}, h^*hH^+ = H^+\). By [3] Theorem 3.3] there exists a positive invertible operator \(k\) in \(M\) such that \(h^*h = k^2Jk^2J\). Note that we may assume \(H^+ = P_{\xi_0}\) with a cyclic and separating vector \(\xi_0 \in H^+\) by the unicity of the standard form. Then \(|h| = kJHk^{-1}k^{-1}JH = hH^+ = \hat{H}^+\).

This completes the proof. \(\square\)
Lemma 2. With \((M, H, H_n^+, n \in \mathbb{N})\) a matrix ordered standard form and \((\hat{H}, \hat{H}_n^+, n \in \mathbb{N})\) a matrix ordered Hilbert space, let \(h\) be an order isomorphism of \(H\) onto \(\hat{H}\). If \(h\) is completely positive, then \(h\) is a complete order isomorphism. In addition, there exists a von Neumann algebra \(M\) such that \((M, H, H_n^+, n \in \mathbb{N})\) is a matrix ordered standard form, and \(\text{Ad}(h)\) is an isomorphism of \(M\) onto \(M\).

Proof. Let \(h = u|h|\) be the polar decomposition of \(h\). By Lemma 1, \(|h|\) can be written as \(|h| = kJ_{H^+} + kJ_{H^+}\) for some positive invertible operator \(k \in M\). Hence

\[
|h_n|H_n^+ = (k \otimes 1_n)J_{H_{n}^+}(k \otimes 1_n)J_{H_{n}^+}H_n^+ = H_n^+.
\]

Then \(u_nH_n^+ = h_nH_n^+ \subset \hat{H}_n^+\). Since \(u\) is unitary, \(u\) is a complete order isomorphism of \(H\) onto \(\hat{H}\). Thus we see that \(h\) is a complete order isomorphism and \(u\) is a complete o.d. isomorphism. By [M2], Proposition 2.6, Theorem 2.7] we obtain the desired result.

Lemma 3. With \((M, H, H_n^+, n \in \mathbb{N})\) a matrix ordered standard form, let \(e\) be a completely positive projection on \(H\). Then there exists a von Neumann algebra \(A\) such that \((A, eH, e_nH_n^+, n \in \mathbb{N})\) is a matrix ordered standard form. In addition, if \(N = M \cap \{e\}'\), then

\[
A = eM|eH = N|eH.
\]

Proof. Put \(J = J_{H^+}, K = eH, K_n = e_nH_n, K_n^+ = eH^+, K_n^+ = e_nH_n^+\) for every \(n \in \mathbb{N}\). There exists by [M1, Lemma 1] a von Neumann algebra \(A\) such that \((A, K, K_n^+)\) is a matrix ordered standard form. The inclusion \(eM|_K \subset A\) follows from the first part of the proof of [M1, Lemma 2]. We prove that \(A \subset N|_K\). Note that in a standard form \((M, H, J, H^+)\) the map \(q \mapsto qJ_qJH^+\) is an order isomorphism of the set of all projections in \(M\) onto the set of all closed faces in \(H^+\) (see [C, Theorem 4.2 c])). If \(p\) is a projection in \(A\), then \(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}J_{K_2^+}^+ \begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix}J_{K_2^+}\), which shall be denoted by \(F\), is a closed face in \(K_2^+\), and

\[
P_F = \begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix}J_{K_2^+}^+ \begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix}J_{K_2^+}.
\]

Here \(P_F\) denotes the projection of \(K_2^+\) onto the (closed) linear span of \(F\) in \(K_2\). There then exists a projection \(P = \begin{bmatrix} a & b \\ b & c \end{bmatrix}\) in \(M_2(M)\) such that \(P|_F = PJ_2PJ_2\), where \(P|_F\) denotes the projection of \(H_2\) onto the closed linear span of the face \((F)\) generated by \(F\) in \(H_2^+\). It follows from [H] Lemma II.1.7] that \(P_F\Xi = e_2P|_F\Xi = P|_F\Xi\) for all \(\Xi \in K_2\). By setting \(\Xi = \begin{bmatrix} 0 & \xi \\ 0 & 0 \end{bmatrix}\) we have

\[
\begin{bmatrix} 0 & \xi \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} bJbJ\xi & bJcJ\xi \\ cJbJ\xi & cJcJ\xi \end{bmatrix}
\]

for all \(\xi \in K\). It follows from [SW Corollary 3.3] that \(b\xi = 0\) for all \(\xi \in K\). Using both equalities \(c = cJcJ\xi\) and \(b^*b + c^2 = c\) since \(P\) is a projection, we have

\[
c\xi = c^2JcJ\xi = (c - b^*b)JcJ\xi = cJcJ\xi = \xi.
\]

Moreover, by setting \(\Xi = \begin{bmatrix} 0 & \xi \\ 0 & 0 \end{bmatrix}\) we have

\[
p\xi = eaJcJ\xi
\]

for all \(\xi \in K\). Therefore, when \(\xi\) is an element of \(K^+\), \(p\xi = eaJcJ\xi = ea\xi\). Hence, \(p\xi = ea\xi\) for all \(\xi \in K\) because \(K\) is spanned by \(K^+\). Since \(e_2P|_F = P|_F\) for \(e_2\),
ea = ae. Consequently, we obtain
\[N|_K \subset eM|_K \subset A \subset N|_K. \]
Therefore, we obtain the desired equalities. \(\square \)

Remark. In the above lemma, if we assume that \((eH, e_nH_n^+, n \in \mathbb{N}) \) is a matrix ordered Hilbert space having the conditions for a matrix ordered standard form and \(e \) is 2-positive instead of the complete positivity, then Lemma 3 holds. Namely, if there exists a matrix ordered standard form \((A, K, K^+_n, n \in \mathbb{N}) \) and \(eH^+ = K^+, e^2H^+_2 = K^+_2 \), then \(A = eM|_K = N|_K. \)

Proof of Theorem A. Put \(K = eH, K^+ = eH^+, K^+_n = e_nH^+_n, \hat{K} = hH, \hat{K}^+ = hH^+ \) and \(\hat{K}^+_n = h_nH^+_n \). Let \(h = u|h| \) and \(h_0 = u_0|h_0| \) be the polar decompositions of \(h \) and \(h_0 = h|_K \), respectively. Since \(e \) is a completely positive projection, it follows from Lemma 3 that \((eM|_K, K, K^+_n) \) is a matrix ordered standard form. By assumption \(h_0 \) is an order isomorphism of \(K \) onto \(\hat{K} \). Hence by Lemma 2 \(|h_0| \) is a complete order isomorphism on \(K \). Therefore, \(|h_0|nK^+_n \) is a selfdual cone in \(K_n \), and so is \(\hat{K}^+_n \) in \(K_n \) because of the complete positivity of \(h \). Since \(f_n \) is the support projection of \(h_n \), it follows that \(\hat{K}^+_n \subset f_n\hat{H}^+_n. \) If \(\xi \in \hat{K}^+_n, \eta \in \hat{H}^+_n \), then \((\xi, f_n\eta) = (\xi, \eta) \geq 0. \) Hence \(\hat{K}^+_n \subset (f_n\hat{H}^+_n)' \) (in \(\hat{K}_n \)). Therefore, \(\hat{K}^+_n = \hat{K}^+_n' \supset (f_n\hat{H}^+_n)' \supset f_n\hat{H}^+_n \) (in \(\hat{K}_n \)). Hence \(\hat{K}^+_n = f_n\hat{H}^+_n \), which means that \(f \) is completely positive. Therefore, by Lemma 3 \((fM|_{\hat{K}_n}, \hat{K}^+_n) \) is a matrix ordered standard form and \(\text{Ad}(h_0) \) is an isomorphism of \(eM|_K \) onto \(fM|_{\hat{K}}. \) \(\square \)

Now, we examine the properties of o.d. homomorphisms between two ordered Hilbert spaces.

Proposition 4 (cf. [DY, (2.1)]). Let \((M, H, J, H^+) \) be a standard form, and let \(\hat{H} \) be a Hilbert space with a selfdual cone \(\hat{H}^+. \) Then \(h \) is an o.d. homomorphism of \(H \) into \(\hat{H} \) if and only if \(hH^+ \subset \hat{H}^+ \) and \(|h| \in M \cap M'. \)

One can give the similar proof to that of Dang-Yamanufo.

Proposition 5 (cf. [DY, (3.1)]). With \((M, H, J, H^+) \) and \(\hat{H}, \hat{H}^+ \) as before, if \(h \) is a bijective o.d. homomorphism of \(H \) to \(\hat{H} \), then \(h \) is an o.d. isomorphism.

Proof. Let \(h = u|h| \) be the polar decomposition of \(h. \) Using the argument in the proof of Proposition 4, we see that \(h \) is an order isomorphism. By Lemma 1, \(|h| \) can be written as \(|h| = kJk \) for some positive invertible operator \(k \in M. \) Since \(u = hk^{-1}Jk^{-1}J, \) it follows that \(uH^+ \subset \hat{H}^+. \) Hence \(u \) is an o.d. homomorphism, and so \(u \) is an o.d. isomorphism. Hence \(|h| \) is an o.d. homomorphism. By [Y] (3.4), \(k \) belongs to \(M \cap M'. \) This means that \(|h|^{-1} \) is an o.d. homomorphism. Therefore, \(h \) is an o.d. isomorphism. This completes the proof. \(\square \)

Lemma 6. With \((M, H, H_n^+, n \in \mathbb{N}) \) a matrix ordered standard form and \((\hat{H}, \hat{H}_n^+, n \in \mathbb{N}) \) a matrix ordered Hilbert space, let \(h \) be a completely positive o.d. homomorphism of \(H \) into \(\hat{H}. \) Then \(h_nH_n^+ \) is a selfdual subcone of \(\hat{H}_n^+ \) and \((h\hat{H}^+, h_nH_n^+, n \in \mathbb{N}) \) is a matrix ordered Hilbert space, and \(h \) is a complete o.d. homomorphism.

Proof. Let \(h = u|h| \) be the polar decomposition of \(h. \) Using Proposition 4, we see that \(|h| \) belongs to \(M \cap M'. \) Hence \(|h_n| \) belongs to \(M_n \cap M'_n. \) This implies that \(h_n \) is an o.d. homomorphism, i.e., \(h \) is a complete o.d. homomorphism. To complete
the proof, it suffices to show that $h_nH^+_n$ is selfdual; hence $|h_n|H^+_n$ is selfdual. Recall that for every $n \in \mathbb{N}$ the selfdual cone H^+_n is generated by the elements $[x_iJ_H + x_jJ_H + \xi^j]_{i,j=1}^n, x_1, \ldots, x_n \in M, \xi \in H^+$. If we set $h = |h| + \varepsilon 1, \varepsilon > 0$, then for such elements x_i, ξ, we get

$$\lim_{\varepsilon \to 0} |h_n| [h\varepsilon^{-\frac{1}{2}} x_iJ_H + h\varepsilon^{-\frac{1}{2}} x_jJ_H + \xi^j]_{i,j=1}^n = \lim_{\varepsilon \to 0} [|h|^{-\frac{1}{2}} x_iJ_H + x_jJ_H + \xi^j]_{i,j=1}^n$$

where e denotes the support projection of $|h|$ and it belongs to the center of M. This implies that $|h_n|H^+_n$ is dense in the selfdual cone $e_nH^+_n$.

Proof of Theorem B. We apply Proposition 4, Proposition 5, Lemma 6 and [M2, Theorem 2.7].

Applying Lemma 3 and Theorem B, we obtain the following corollary:

Corollary 7. For matrix ordered standard forms $(M, H, H^+_n, n \in \mathbb{N})$ and $(\hat{M}, \hat{H}, \hat{H}^+_n, n \in \mathbb{N})$, suppose that u is a completely positive partial isometry with initial projection e and final projection f. Put $\rho(x) = \bar{x}u^*$ for all $x \in eMe$. Then $(eM|eH, e_nH^+_n, n \in \mathbb{N})$ and $(f\hat{M}|f\hat{H}, f_n\hat{H}^+_n, n \in \mathbb{N})$ are matrix ordered standard forms, and ρ is a *-isomorphism of eMe onto fMf.

Finally, the authors would like to express their gratitude to the members of Sendai Seminar, especially Professors T. Okayasu, F. Hiai, and K. Saitô for their useful suggestions.

References

[M2], *Complete order isomorphisms between non-commutative L^2-spaces* in Math. Scand. (to appear).

Department of Mathematics, Faculty of Humanities and Social Sciences, Iwate University, Morioka, 020-8550, Japan

E-mail address: ymiura@iwate-u.ac.jp

Niitsu Senior High School, Niitsu, 956-0832, Japan