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EXISTENCE AND UNIQUENESS OF STEADY-STATE
SOLUTIONS FOR AN ELECTROCHEMISTRY MODEL

WEIFU FANG AND KAZUFUMI ITO

(Communicated by David Sharp)

Abstract. We present a simple proof for the existence and uniqueness of
steady-state solutions to an electrochemistry model with multiple species.

In this note we give a simple proof for the existence and uniqueness of steady-
state solutions for an electrochemistry model with multiple species. The equations
in such a model have been the subject of a series of papers by Choi and Lui (see
[1, 2, 3, 4] and references therein). In the steady-state, the species concentrations
can be expressed in terms of the electrical potential ϕ, and thus the problem is
equivalent to solving a single integro-differential equation for ϕ (see, e.g., [4] for
details). Let Ω be an open, bounded C0,1 domain in Rn (n = 1, 2 or 3) and
∂Ω = Γ1 ∪ Γ2 ∪ Γ3 where Γ1 and Γ2 are relatively closed. Then the equation for
the potential is

− ε∆ϕ =
m∑
i=1

ziCie
−ziϕ(x)∫

Ω
e−ziϕ(y)dy

+Q(x)(1)

with boundary conditions

ϕ = −α/2 on Γ1, ϕ = α/2 on Γ2 and
∂ϕ

∂ν
= 0 on Γ3.(2)

Here Q(x) ∈ L2(Ω) represents a possible background charge concentration, and
ε > 0 is the permittivity. The constant Ci > 0 is the prescribed mass for the ith
species, and zi is its signed charge. α > 0 is the applied potential difference between
the two electrodes. (For convenience, we have translated ϕ by the constant α/2
from the formulation in [4].) The existence/uniqueness of ϕ in this problem has
been shown by Choi and Lui for the case n = 1 in [1, 2] and for the case n ≥ 2 in
[3], both under the assumptions that Q ≡ 0 and

∑
ziCi = 0. These assumptions

were then removed in [4]. Their arguments varied from case to case, and were quite
involved, especially for the uniqueness. The proof that we will present in this note
is simple and valid for all cases, and provides an explicit L∞ bound for the solution.
In particular, our argument for uniqueness is short and elementary.
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We begin with the weak form of the problem. A weak solution to (1)-(2) is
defined as a function ϕ ∈ H1(Ω) ∩ L∞(Ω) with ϕ = −α/2 on Γ1 and ϕ = α/2 on
Γ2 that satisfies

ε〈∇ϕ,∇ψ〉 = 〈f(ϕ) +Q,ψ〉(3)

for all ψ ∈ V = {ψ ∈ H1(Ω) : ψ = 0 on Γ1 ∪ Γ2}, where we set

f(ϕ) =
m∑
i=1

ziCie
−ziϕ∫

Ω
e−ziϕ(y)dy

.(4)

Here 〈·, ·〉 denotes the usual L2 inner product on Ω.
To show existence, we construct the solution map T as follows. For each ϕ̃ ∈

X = {φ ∈ L2(Ω) : |φ(x)| ≤ k} (k ≥ α/2 is to be chosen below), define ϕ = T ϕ̃,
where ϕ ∈ H1(Ω) with ϕ = −α/2 on Γ1 and ϕ = α/2 on Γ2 is the unique solution
to

ε〈∇ϕ,∇ψ〉 = 〈f̃(ϕ) +Q,ψ〉, ψ ∈ V,(5)

where

f̃(ϕ) =
m∑
i=1

ziCie
−ziϕ∫

Ω
e−ziϕ̃(y)dy

.

The unique existence of such ϕ is standard since f̃(ϕ) is monotone decreasing
in ϕ and hence the unique solution ϕ is the minimizer of the convex, lower-
semicontinuous functional

J(ϕ) =
ε

2
|∇ϕ|22 +

m∑
i=1

Ci

∫
Ω
e−ziϕ(y)dy∫

Ω e
−ziϕ̃(y)dy

− 〈Q,ϕ〉

in a convex set of H1(Ω). Clearly T is compact due to the compact embedding of
H1 to L2, and it can be easily shown that T is continuous with respect to the L2

norm. Next we choose k so that T maps X into itself. Notice that

zi|Ω|e−zik ≤ zi
∫

Ω

e−ziϕ̃(y)dy ≤ zi|Ω|ezik

and thus

1
|Ω|

m∑
i=1

ziCie
−zi(ϕ+k) ≤ f̃(ϕ) ≤ 1

|Ω|

m∑
i=1

ziCie
−zi(ϕ−k).

Hence by setting ψ = ϕk ≡ (ϕ− k)+ ∈ V in (5) we obtain

ε〈∇ϕk,∇ϕk〉 = 〈f̃(ϕ) +Q,ϕk〉 ≤ 〈q, ϕk〉,(6)

where

q(x) =
1
|Ω|

m∑
i=1

ziCi +Q(x).(7)

Here q measures the total charge concentration in the system. Under the assump-
tions in [1, 2, 3], q ≡ 0 and the usual maximum principle applies to yield |ϕ| ≤ α/2.
In the general case when q 6≡ 0, we apply a more general version of the maximum
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principle, which is stated in Lemma A below. From this result, inequality (6) yields
that ϕ(x) ≤ k∗ for all x ∈ Ω, where

k∗ =
α

2
+

4α2
6|Ω|1/6
ε

|q|2.(8)

Similarly, by choosing ψ = (ϕ + k)− = −(−ϕ − k)+ ∈ V in (5) we can show that
−ϕ(x) ≤ k∗. Thus, we have established the L∞ bounds for ϕ = T ϕ̃:

|ϕ(x)| ≤ k∗ for x ∈ Ω.(9)

Therefore, when we choose k = k∗ in the definition of X , the solution map T is
from X into X . Hence, by Schauder’s fixed point theorem, T has a fixed point in
X , which is a solution to (3).

As for uniqueness, it suffices to simply show that f in (4) is monotone decreasing:

〈f(ϕ)− f(ϕ̂), ϕ− ϕ̂〉 ≤ 0

for all admissible ϕ and ϕ̂. In fact each term in f is monotone decreasing. To see
this, let

δi = − ln
(∫

Ω

e−ziϕ(y)dy

)
or e−δi =

∫
Ω

e−ziϕ(y)dy

and similarly for δ̂i. Then

e−ziϕ(x)∫
Ω e
−ziϕ(y)dy

= eδi−ziϕ(x),
e−ziϕ̂(x)∫

Ω e
−ziϕ̂(y)dy

= eδ̂i−ziϕ̂(x)

and ∫
Ω

eδi−ziϕ(x)dx =
∫

Ω

eδ̂i−ziϕ̂(x)dx = 1.

Hence 〈eδi−ziϕ(x) − eδ̂i−ziϕ̂(x), c〉 = 0 for any constant c. Therefore

ziCi〈
e−ziϕ(x)∫

Ω e
−ziϕ(y)dy

− e−ziϕ̂(x)∫
Ω e
−ziϕ̂(y)dy

, ϕ(x) − ϕ̂(x)〉

= Ci〈eδi−ziϕ(x) − eδ̂i−ziϕ̂(x), ziϕ(x) − ziϕ̂(x)〉

= Ci〈eδi−ziϕ(x) − eδ̂i−ziϕ̂(x), (ziϕ(x) − ziϕ̂(x))− (δi − δ̂i)〉

= −Ci〈eδi−ziϕ(x) − eδ̂i−ziϕ̂(x), (δi − ziϕ(x)) − (δ̂i − ziϕ̂(x))〉
≤ 0

since the exponential function is increasing and Ci > 0. Therefore f is monotone
decreasing in ϕ and thus we easily obtain the uniqueness of weak solutions.

We complete our presentation by proving the lemma that is used to establish
the L∞ bounds (9). We denote by α6 the constant in the Poincaré inequality
|ψ|6 ≤ α6|∇ψ|2 for all ψ ∈ V .

Lemma A. Suppose φ ∈ H1(Ω), and φτ = (φ− τ)+ ∈ V for τ ≥ τ̄ . If φτ satisfies

〈∇φτ ,∇φτ 〉 ≤ 〈F, φτ 〉

for some F ∈ L2(Ω), then

φ(x) ≤ τ̄ + 4α2
6|Ω|1/6|F |2.
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Proof. Let Ωτ = {x ∈ Ω : φ(x) > τ}. By the Poincaré and the Hölder inequalities,

α−2
6 |φτ |26 ≤ |∇φτ |22 ≤ 〈F, φτ 〉 ≤ |F |2|φτ |6|Ωτ |1/3,

that is,

|φτ |6 ≤ α2
6|F |2|Ωτ |1/3.

For τ̂ > τ ≥ τ̄ ,

|φτ |66 ≥
∫

Ωτ̂

|φτ |6dx ≥ (τ̂ − τ)6|Ωτ̂ |.

Therefore

|Ωτ̂ | ≤ (α2
6|F |2)6(τ̂ − τ)−6|Ωτ |2.

Then by applying an elementary lemma (see [5, Lemma 2.9]) to the non-increasing
function |Ωτ | of τ , we obtain

|Ωτ | = 0 for τ ≥ τ∗,
where

τ∗ = τ̄ + 4α2
6|Ω|1/6|F |2.

Therefore we have φτ∗ = 0 a.e. in Ω. Hence φ ≤ τ∗ as stated.
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