Products of Michael spaces and completely metrizable spaces
HTML articles powered by AMS MathViewer
- by Dennis K. Burke and Roman Pol PDF
- Proc. Amer. Math. Soc. 129 (2001), 1535-1544 Request permission
Abstract:
For disjoint subsets $A,C$ of $[0,1]$ the Michael space $M(A,C)=A\cup C$ has the topology obtained by isolating the points in $C$ and letting the points in $A$ retain the neighborhoods inherited from $[0,1]$. We study normality of the product of Michael spaces with complete metric spaces. There is a ZFC example of a Lindelöf Michael space $M(A,C)$, of minimal weight $\aleph _1$, with $M(A,C)\times B(\aleph _0)$ Lindelöf but with $M(A,C)\times B(\aleph _1)$ not normal. ($B(\aleph _\alpha )$ denotes the countable product of a discrete space of cardinality $\aleph _\alpha$.) If $M(A)$ denotes $M(A,[0,1]\smallsetminus A)$, the normality of $M(A)\times B(\aleph _0)$ implies the normality of $M(A)\times S$ for any complete metric space $S$ (of arbitrary weight). However, the statement â$M(A,C)\times B(\aleph _1)$ normal implies $M(A,C)\times B(\aleph _2)$ normalâ is axiom sensitive.References
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- William G. Fleissner, An axiom for nonseparable Borel theory, Trans. Amer. Math. Soc. 251 (1979), 309â328. MR 531982, DOI 10.1090/S0002-9947-1979-0531982-9
- William G. Fleissner, Separation properties in Moore spaces, Fund. Math. 98 (1978), no. 3, 279â286. MR 478111, DOI 10.4064/fm-98-3-279-286
- D. H. Fremlin, Consequences of Martinâs axiom, Cambridge Tracts in Mathematics, vol. 84, Cambridge University Press, Cambridge, 1984. MR 780933, DOI 10.1017/CBO9780511896972
- D. H. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. (Rozprawy Mat.) 260 (1987), 116. MR 928693
- W. Hurewicz, Relativ Perfekte Teile von Punktmengen ung Mengen (A), Fund. Math. 12 (1928), 78-109.
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- R. Björn Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229â308; erratum, ibid. 4 (1972), 443. With a section by Jack Silver. MR 309729, DOI 10.1016/0003-4843(72)90001-0
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- George Koumoullis, Cantor sets in Prohorov spaces, Fund. Math. 124 (1984), no. 2, 155â161. MR 774507, DOI 10.4064/fm-124-2-155-161
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; PaĆstwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- L. Brian Lawrence, The influence of a small cardinal on the product of a Lindelöf space and the irrationals, Proc. Amer. Math. Soc. 110 (1990), no. 2, 535â542. MR 1021211, DOI 10.1090/S0002-9939-1990-1021211-4
- L. Brian Lawrence, A ZFC example (of minimum weight) of a Lindelöf space and a completely metrizable space with a nonnormal product, Proc. Amer. Math. Soc. 124 (1996), no. 2, 627â632. MR 1273506, DOI 10.1090/S0002-9939-96-02864-X
- E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375â376. MR 152985, DOI 10.1090/S0002-9904-1963-10931-3
- Ernest A. Michael, Paracompactness and the Lindelöf property in finite and countable Cartesian products, Compositio Math. 23 (1971), 199â214. MR 287502
- E. Michael, Correction to: âA note on completely metrizable spacesâ [Proc. Amer. Math. Soc. 96 (1986), no. 3, 513â522; MR0822451 (87f:54045)], Proc. Amer. Math. Soc. 100 (1987), no. 1, 204. MR 883430, DOI 10.1090/S0002-9939-1987-0883430-7
- Roman Pol, Note on decompositions of metrizable spaces. II, Fund. Math. 100 (1978), no. 2, 129â143. MR 494011, DOI 10.4064/fm-100-2-129-143
- Mary Ellen Rudin and Michael Starbird, Products with a metric factor, General Topology and Appl. 5 (1975), no. 3, 235â248. MR 380709
- A. H. Stone, On $\sigma$-discreteness and Borel isomorphism, Amer. J. Math. 85 (1963), 655â666. MR 156789, DOI 10.2307/2373113
Additional Information
- Dennis K. Burke
- Affiliation: Department of Mathematics and Statistics, Miami University, Oxford, Ohio 45056
- Email: dburke@miavx1.muohio.edu
- Roman Pol
- Affiliation: Department of Mathematics, Warsaw University, Warsaw, Poland
- Email: pol@mimuw.edu.pl
- Received by editor(s): March 8, 1998
- Received by editor(s) in revised form: July 28, 1999
- Published electronically: October 10, 2000
- Additional Notes: The results in this note were obtained while the second author was a Visiting Professor at Miami University. The author would like to express his gratitude to the Department of Mathematics and Statistics of Miami University for their hospitality.
- Communicated by: Alan Dow
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 1535-1544
- MSC (1991): Primary 54E50, 54E52, 54D15
- DOI: https://doi.org/10.1090/S0002-9939-00-05664-1
- MathSciNet review: 1712941