Coefficient ideals and the Cohen-Macaulay property of Rees algebras
HTML articles powered by AMS MathViewer
- by Eero Hyry PDF
- Proc. Amer. Math. Soc. 129 (2001), 1299-1308 Request permission
Abstract:
Let $A$ be a local ring and let $I\subset A$ be an ideal of positive height. If $J\subset I$ is a reduction of $I$, then the coefficient ideal $\mathfrak {a}(I,J)$ is by definition the largest ideal $\mathfrak {a}$ such that $I\mathfrak {a}= J\mathfrak {a}$. In this article we study the ideal $\mathfrak {a}(I,J)$ when the Rees algebra $R_A(I)$ is Cohen-Macaulay.References
- Ian M. Aberbach and Craig Huneke, A theorem of Briançon-Skoda type for regular local rings containing a field, Proc. Amer. Math. Soc. 124 (1996), no. 3, 707–713. MR 1301483, DOI 10.1090/S0002-9939-96-03058-4
- Henri Skoda and Joël Briançon, Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de $\textbf {C}^{n}$, C. R. Acad. Sci. Paris Sér. A 278 (1974), 949–951 (French). MR 340642
- Shiro Goto and Koji Nishida, The Cohen-Macaulay and Gorenstein Rees algebras associated to filtrations, American Mathematical Society, Providence, RI, 1994. Mem. Amer. Math. Soc. 110 (1994), no. 526. MR 1287443
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093
- M. Herrmann, E. Hyry, and T. Korb, On Rees algebras with a Gorenstein Veronese subring, J. Algebra 200 (1998), no. 1, 279–311. MR 1603275, DOI 10.1006/jabr.1997.7207
- M. Herrmann, S. Ikeda, and U. Orbanz, Equimultiplicity and blowing up, Springer-Verlag, Berlin, 1988. An algebraic study; With an appendix by B. Moonen. MR 954831, DOI 10.1007/978-3-642-61349-4
- J. Herzog, A. Simis, and W. V. Vasconcelos, On the canonical module of the Rees algebra and the associated graded ring of an ideal, J. Algebra 105 (1987), no. 2, 285–302. MR 873664, DOI 10.1016/0021-8693(87)90194-3
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6
- E. Hyry, Blow-up algebras and rational singularities, Manus. Math. 98 (1999), 377–390.
- —, Necessary and sufficient conditions for the Cohen-Macaulayness of the form ring, J. Algebra 212 (1999), 17–27.
- Manfred Herrmann, Eero Hyry, and Jürgen Ribbe, On multi-Rees algebras, Math. Ann. 301 (1995), no. 2, 249–279. With an appendix by Ngô Viêt Trung. MR 1314587, DOI 10.1007/BF01446629
- Mark Johnson and Bernd Ulrich, Artin-Nagata properties and Cohen-Macaulay associated graded rings, Compositio Math. 103 (1996), no. 1, 7–29. MR 1404996
- Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 195–279. MR 276239
- Joseph Lipman, Desingularization of two-dimensional schemes, Ann. of Math. (2) 107 (1978), no. 1, 151–207. MR 491722, DOI 10.2307/1971141
- Joseph Lipman, Adjoints of ideals in regular local rings, Math. Res. Lett. 1 (1994), no. 6, 739–755. With an appendix by Steven Dale Cutkosky. MR 1306018, DOI 10.4310/MRL.1994.v1.n6.a10
- Joseph Lipman, Cohen-Macaulayness in graded algebras, Math. Res. Lett. 1 (1994), no. 2, 149–157. MR 1266753, DOI 10.4310/MRL.1994.v1.n2.a2
- Joseph Lipman and Avinash Sathaye, Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math. J. 28 (1981), no. 2, 199–222. MR 616270
- Joseph Lipman and Bernard Teissier, Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J. 28 (1981), no. 1, 97–116. MR 600418
- Aron Simis, Bernd Ulrich, and Wolmer V. Vasconcelos, Cohen-Macaulay Rees algebras and degrees of polynomial relations, Math. Ann. 301 (1995), no. 3, 421–444. MR 1324518, DOI 10.1007/BF01446637
- Ngô Việt Trung, Duong Quôc Viêt, and Santiago Zarzuela, When is the Rees algebra Gorenstein?, J. Algebra 175 (1995), no. 1, 137–156. MR 1338971, DOI 10.1006/jabr.1995.1179
- Wolmer V. Vasconcelos, Arithmetic of blowup algebras, London Mathematical Society Lecture Note Series, vol. 195, Cambridge University Press, Cambridge, 1994. MR 1275840, DOI 10.1017/CBO9780511574726
- —, Lecture notes on Cohen-Macaulay blowup algebras and their equations, Lecture notes for the Workshop on Commutative Algebra and its Relation to Combinatorics and Computer Algebra in Trieste, 1994.
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, Graduate Texts in Mathematics, Vol. 29, Springer-Verlag, New York-Heidelberg, 1975. Reprint of the 1960 edition. MR 0389876
Additional Information
- Eero Hyry
- Affiliation: Department of Technology, National Defense College, Santahamina, FIN-00860, Helsinki, Finland
- Email: Eero.Hyry@helsinki.fi
- Received by editor(s): April 12, 1999
- Received by editor(s) in revised form: August 24, 1999
- Published electronically: October 24, 2000
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 1299-1308
- MSC (2000): Primary 13A30; Secondary 13B22, 14B05
- DOI: https://doi.org/10.1090/S0002-9939-00-05673-2
- MathSciNet review: 1712905