## A note on $p$-adic Nevanlinna theory

HTML articles powered by AMS MathViewer

- by Min Ru PDF
- Proc. Amer. Math. Soc.
**129**(2001), 1263-1269 Request permission

## Abstract:

In this paper, we show that the First Main Theorem in $p$-adic Nevanlinna theory implies the Second Main Theorem without the ramification term.## References

- Abdelbaki Boutabaa,
*Théorie de Nevanlinna $p$-adique*, Manuscripta Math.**67**(1990), no. 3, 251–269 (French, with English summary). MR**1046988**, DOI 10.1007/BF02568432 - Cartan, H.: Sur les zeros des combinaisions linearires de $p$ fonctions holomorpes donnees. Mathematica(cluj)
**7**, 80-103 (1933). - Cherry, W.: Hyperbolic $p$-adic analytic spaces. Ph.D. Thesis, Yale University, 1993.
- William Cherry,
*Non-Archimedean analytic curves in abelian varieties*, Math. Ann.**300**(1994), no. 3, 393–404. MR**1304429**, DOI 10.1007/BF01450493 - William Cherry,
*A survey of Nevanlinna theory over non-Archimedean fields*, Bull. Hong Kong Math. Soc.**1**(1997), no. 2, 235–249. International Workshop on Value Distribution Theory and Its Applications (Hong Kong, 1996). MR**1605198** - William Cherry and Zhuan Ye,
*Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem*, Trans. Amer. Math. Soc.**349**(1997), no. 12, 5043–5071. MR**1407485**, DOI 10.1090/S0002-9947-97-01874-6 - Capi Corrales-Rodrigáñez,
*Nevanlinna theory on the $p$-adic plane*, Ann. Polon. Math.**57**(1992), no. 2, 135–147. MR**1182179**, DOI 10.4064/ap-57-2-135-147 - A. È. Erëmenko and M. L. Sodin,
*Distribution of values of meromorphic functions and meromorphic curves from the standpoint of potential theory*, Algebra i Analiz**3**(1991), no. 1, 131–164 (Russian); English transl., St. Petersburg Math. J.**3**(1992), no. 1, 109–136. MR**1120844** - Hu, P.C. and Yang, C.C.: Value distribution theory of $p$-adic meromorphic functions. J. Contemp. Math. Anal., to appear.
- Hu, P.C. and Yang, C.C.: The Cartan conjecture for $p$-adic meromorphic functions. J. Contemp. Math. Anal., to appear.
- Hà Huy Khoái,
*On $p$-adic meromorphic functions*, Duke Math. J.**50**(1983), no. 3, 695–711. MR**714825**, DOI 10.1215/S0012-7094-83-05033-0 - Hà Huy Khoái and My Vinh Quang,
*On $p$-adic Nevanlinna theory*, Complex analysis, Joensuu 1987, Lecture Notes in Math., vol. 1351, Springer, Berlin, 1988, pp. 146–158. MR**982080**, DOI 10.1007/BFb0081250 - Ha Huy Khoai and Mai Van Tu,
*$p$-adic Nevanlinna-Cartan theorem*, Internat. J. Math.**6**(1995), no. 5, 719–731. MR**1351163**, DOI 10.1142/S0129167X95000304 - Rolf Nevanlinna,
*Le théorème de Picard-Borel et la théorie des fonctions méromorphes*, Chelsea Publishing Co., New York, 1974 (French). Reprinting of the 1929 original. MR**0417418** - Min Ru and Wilhelm Stoll,
*The second main theorem for moving targets*, J. Geom. Anal.**1**(1991), no. 2, 99–138. MR**1113373**, DOI 10.1007/BF02938116 - Paul Vojta,
*Diophantine approximations and value distribution theory*, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR**883451**, DOI 10.1007/BFb0072989 - B. L. van der Waerden,
*Algebra. Vol. I*, Springer-Verlag, New York, 1991. Based in part on lectures by E. Artin and E. Noether; Translated from the seventh German edition by Fred Blum and John R. Schulenberger. MR**1080172**, DOI 10.1007/978-1-4612-4420-2

## Additional Information

**Min Ru**- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204
- Email: minru@math.uh.edu
- Received by editor(s): July 20, 1999
- Published electronically: October 19, 2000
- Additional Notes: The author is supported in part by NSF grant DMS-9800361 and by NSA grant MDA904-99-1-0034. The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation hereon.
- Communicated by: Steven R. Bell
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**129**(2001), 1263-1269 - MSC (2000): Primary 11S80, 30D35, 32H30
- DOI: https://doi.org/10.1090/S0002-9939-00-05680-X
- MathSciNet review: 1712881