NON-HYPERBOLIC COMPLEX SPACE WITH A HYPERBOLIC NORMALIZATION

SHULIM KALIMAN AND MIKHAIL ZAIDENBERG

(Communicated by Steven R. Bell)

Abstract. We construct an example of a non-hyperbolic singular projective surface X whose normalization V is the square of a genus 3 curve C and hence, hyperbolic.

Let C be a smooth irreducible projective curve of genus $g \geq 2$. Then the smooth projective surface $V = C \times C$ is Kobayashi hyperbolic, that is, the Kobayashi pseudodistance on it is a distance \mathbb{D} [2]. Let $V \hookrightarrow \mathbb{P}^N$ be a projective embedding. Consider a generic projection $\pi : V \twoheadrightarrow \mathbb{P}^3$. By Bertini’s theorem, the singular locus S (i.e. the closure of the set of double points) of the image surface $X = \pi(V) \subset \mathbb{P}^3$ is an irreducible curve, and $\pi : V \twoheadrightarrow X$ is a normalization map (see [4]). The question arises whether the surface X is also hyperbolic. The answer is positive [5], and hence by the stability of hyperbolicity theorem [6], any (smooth) surface X_0 in \mathbb{P}^3 close enough to X is hyperbolic, as well. In that way examples of degree 32 smooth hyperbolic surfaces in \mathbb{P}^3 were produced [5].

By Proposition 1.1 in [5], hyperbolicity of a (singular) surface X as above is equivalent to hyperbolicity of its double curve S. Actually, in [5] it is shown that the geometric genus of the curve S is ≥ 225, which provides that X is hyperbolic.

On the other hand, by the Kobayashi-Kwack theorem [2, 3], a normalization of a hyperbolic complex space is also hyperbolic. In this note we give an example which shows that in general, the converse is not true. To describe this example, denote by C the Fermat quartic $x^4 + y^4 + z^4 = 0$ in \mathbb{P}^2. Then the Cartesian square $V = C \times C \subset \mathbb{P}^2 \times \mathbb{P}^2 \hookrightarrow \mathbb{P}^8$ (the Segre embedding) is a smooth surface of degree 32 in \mathbb{P}^8. We construct a singular projective surface X whose normalization is V, which has a fibration $X \rightarrow C$ over C with general fibre isomorphic to C and with four degenerate fibres $C_i, i = 1, \ldots, 4$, isomorphic to \mathbb{P}^1. The “double curve” $S = C_1 \cup \cdots \cup C_4 \subset X$ of X is neither irreducible nor hyperbolic, in contrast with the situation studied in [4]. Thus, the assumption in [4] that the projection π is generic, is likely to be essential to provide hyperbolicity of the image surface $X = \pi(V)$.

Actually, in our example the surface X does not appear as a projection of $V = C \times C$; but it has a natural embedding into a four-dimensional Brauer-Severi variety Y (see [4]) which is a smooth projective fiber bundle over \mathbb{P}^2 with general fibre \mathbb{P}^2.

Received by the editors July 30, 1999.

2000 Mathematics Subject Classification. Primary 32H15, 32H20.
More precisely, let the surface \(V = C \times C \subset \mathbb{P}^2 \times \mathbb{P}^2 \) be given as

\[
V = \left\{ \begin{array}{l}
y^4 + x^4 + z^4 = 0, \\
u^4 + v^4 + w^4 = 0.
\end{array} \right.
\]

Evidently, it is hyperbolic; indeed, \(C \) is a smooth genus 3 curve.

Set \(C_1 = C \setminus \{ z = 0 \} \) and \(C_2 = C \setminus \{ x = 0 \} \). Let \(q : E \to C \) be an algebraic fiber bundle over \(C \) with the fiber \(\mathbb{P}^2 \) such that \(q^{-1}(C_k) \cong C_k \times F_k \) where \(F_k \cong \mathbb{P}^2 \) with a homogeneous coordinate system \((u_k : v_k : w_k) \), \(k = 1, 2 \), and the transition mapping is given in \(q^{-1}(C_1 \cap C_2) \) as follows: \((u_2 : v_2 : w_2) = (zu_1 : xv_1 : xw_1)\). Let \(X \subset E \) be the surface defined by the equations

\[
X_1 = X \cap q^{-1}(C_1) = \left\{ \begin{array}{l}
y^4 + x^4 + z^4 = 0, \\
z^4u_1^4 + y^4(v_1^4 + w_1^4) = 0
\end{array} \right.
\]

and

\[
X_2 = X \cap q^{-1}(C_2) = \left\{ \begin{array}{l}
y^4 + x^4 + z^4 = 0, \\
x^4u_2^4 + y^4(v_2^4 + w_2^4) = 0
\end{array} \right.
\]

Then the intersection \(S := X \cap \{ y = 0 \} \) consists of four disjoint smooth rational curves (whereas any other fibre of the natural projection \(X \to C \), that is, the restriction to \(X \) of the projection of the Cartesian square \(\mathbb{P}^2 \times \mathbb{P}^2 \) to the first factor, is isomorphic to the curve \(C \)). Thus, the surface \(X \) is not hyperbolic (cf. Remark 1 below).

Put \(V_1 = V \setminus \{ z = 0 \} \), \(V_2 = V \setminus \{ x = 0 \} \), and consider further the morphisms

\[
\nu_i : V_i \to X_i, \ i = 1, 2,
\]

given as

\[
(u_1 : v_1 : w_1) = (yu : zw : zw) \quad \text{resp.,} \quad (u_2 : v_2 : w_2) = (yu : xv : xw).
\]

It is easily seen that these formulas define a birational morphism \(\nu : V \to X \) which makes \(V \) a normalization of \(X \). Indeed, since \(V \) is a smooth surface, \(\nu \) can be factorized through the normalization \(\nu' : V' \to X \) of \(X \), that is, \(\nu = \mu \circ \nu' \) where \(\mu : V \to V' \) is a birational morphism. It is easily seen that \(\mu \) is a bijection, and then by Zariski’s Main Theorem, it is an isomorphism. Thus, \(\nu : V \to X \) is a normalization of \(X \). This gives a desired example.

Remarks.

1. In fact, the surface \(X \) is hyperbolic modulo the “double curve” \(S \). This follows from the fact that any holomorphic disc \(f : \Delta \to X \) (where \(\Delta \) denotes the unit disc) whose image is not contained in \(S \) can be lifted to the normalization, that is, there exists a holomorphic disc \(\tilde{f} : \Delta \to V \) such that \(f = \nu \circ \tilde{f} \). Hence, since \(V \) is hyperbolic, the Kobayashi-Royden pseudometric on \(X \) can be estimated from below outside of the directions tangent to \(S \).

2. We can easily get a similar example of a non-hyperbolic affine algebraic surface which has a smooth hyperbolic affine normalization. Indeed, let \(V_0 \subset \mathbb{C}^4 \) resp., \(X_0 \subset \mathbb{C}^4 \) be the surface given by the equations

\[
\begin{cases}
y^4 + x^4 + 1 = 0, \\
u^4 + v^4 + 1 = 0,
\end{cases}
\]

resp.,

\[
\begin{cases}
y^4 + x^4 + 1 = 0, \\
u^4 + y^4(v^4 + 1) = 0.
\end{cases}
\]
Then, as above, the restriction to \(V_0 \) of the birational morphism
\[
\sigma : \mathbb{C}^4 \to \mathbb{C}^4, \quad \sigma : (x, y, u, v) \mapsto (x, y, yu, v)
\]
(which consists of blowing up with center at the plane \(y = u = 0 \) and then deleting the proper transform of the divisor \(y = 0 \)) makes \(V_0 \) a normalization of \(X_0 \). The intersection \(S_0 := X_0 \cap \{ y = 0 \} \) consists of four complex affine lines \(\simeq \mathbb{C} \) and hence, the surface \(X_0 \) is not hyperbolic, whereas its normalization \(V_0 \) is hyperbolic being the Cartesian square of a hyperbolic affine curve \(C_0 = \{ x^4 + y^4 + 1 = 0 \} \).

References

York, 1970. [MR 43:3503]

[MR 39:1445]

Department of Mathematics and Computer Science, University of Miami, Coral
Gables, Florida 33124

E-mail address: kaliman@cs.miami.edu

Université Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF, BP 74, 38402 St.
Martin d’Hères cédex, France

E-mail address: zaidenbe@ujf-grenoble.fr