Holomorphic perturbation of Fourier coefficients
HTML articles powered by AMS MathViewer
- by Thomas Vils Pedersen PDF
- Proc. Amer. Math. Soc. 129 (2001), 1365-1366 Request permission
Abstract:
Let $\mathbb {T}$ be the unit circle, let $\mathcal {B}$ be a Banach space continuously embedded in $L^1(\mathbb {T})$ and suppose that $\mathcal {B}$ is a Banach $L^1(\mathbb {T})$-module under convolution. We show that if $f(z)=\sum _{n=-\infty }^{\infty } a_nz^n\in \mathcal {B}$ and $F$ is holomorphic in a neighbourhood $U$ of $0$ with $F(0)=0$ and $a_n\in U\ (n\in \mathbb {Z}),$ then $\sum _{n=-\infty }^{\infty } F(a_n)z^n\in \mathcal {B}.$References
- J. T. Burnham, Closed ideals in subalgebras of Banach algebras. I, Proc. Amer. Math. Soc. 32 (1972), 551–555. MR 295078, DOI 10.1090/S0002-9939-1972-0295078-5
- Hans Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968. MR 0306811
- Hermann Render, The maximal ideal space of $H^\infty (\mathbf D)$ with respect to the Hadamard product, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1409–1411. MR 1476388, DOI 10.1090/S0002-9939-99-04697-3
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
Additional Information
- Thomas Vils Pedersen
- Affiliation: Laboratoire de Mathématiques Pures, Université Bordeaux 1, 351, cours de la Libération, F-33405 Talence cédex, France
- Email: vils@math.u-bordeaux.fr
- Received by editor(s): July 20, 1999
- Published electronically: October 11, 2000
- Additional Notes: This work was carried out at Université Bordeaux 1 while the author was holding a TMR Marie Curie postdoctoral grant from the European Commission.
- Communicated by: Dale Alspach
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 1365-1366
- MSC (2000): Primary 42A16; Secondary 46J20
- DOI: https://doi.org/10.1090/S0002-9939-00-05785-3
- MathSciNet review: 1814161