ON ABSORBING EXTENSIONS

KLAUS THOMSEN

(Communicated by David R. Larson)

ABSTRACT. Building on the work of Kasparov we show that there always exists a trivial absorbing extension of \(A \) by \(B \otimes \mathcal{K} \), provided only that \(A \) and \(B \) are separable. If \(A \) is unital there is a unital trivial extension which is unitally absorbing.

1. Introduction

Absorbing trivial extensions play an important role in the theory of extensions of \(C^* \)-algebras; cf. 15.12 in [B]. Recently the interest in such extensions has been renewed because of the way \(KK \)-theory comes into the classification program. In this connection, as well as in the proper theory of \(C^* \)-extensions, it is slightly disturbing that the existence of an absorbing trivial extension has only been established in the case where at least one of the \(C^* \)-algebras involved is nuclear; cf. Theorem 5 of [K]. The purpose of the present note is to show that such extensions always exist when both \(C^* \)-algebras are separable. The argument for this is a modification of Kasparov’s approach from [K]. The absorbing trivial extensions were constructed, in [K] as well as before Kasparov’s work, by taking the infinite direct sum of the same copy of a faithful unital representation of the separable \(C^* \)-algebra \(A \) (for the moment assumed to be unital) which plays the role of the quotient in the extensions. The resulting representation \(\pi : A \to \mathcal{B}(\mathcal{H}) \) was then composed with the natural imbedding \(\mathcal{B}(\mathcal{H}) \subseteq \mathcal{M}(B \otimes \mathcal{K}) \), where \(B \otimes \mathcal{K} \) is the stable \(C^* \)-algebra which features as the ideal in the extensions. So in practice this means that the absorbing extension was constructed by taking a weak* dense sequence of states of \(A \), repeating all states in the sequence infinitely often, and then adding the corresponding GNS-representations. This procedure has nothing to do with the \(C^* \)-algebra \(B \), and it is a highly non-trivial task to show that it often results in an absorbing extension when prolonged to a map \(A \to \mathcal{M}(B \otimes \mathcal{K}) \); cf. [K]. The observation we offer here is that if one instead takes a sequence \(s_n : A \to B \otimes \mathcal{K} \) of completely positive contractions which is dense for the topology of pointwise norm-convergence among all completely positive contractions (such a sequence exists when both \(A \) and \(B \) are separable), repeats each \(s_n \) infinitely often and add up the unital representations

\[
\pi_n : A \to \mathcal{M}(B \otimes \mathcal{K}) , \ n \in \mathbb{N} ,
\]
coming from the Kasparov-Stinespring decompositions
\[s_n(\cdot) = W_n^* \pi_n(\cdot) W_n, \]
the resulting representation \(A \to \mathcal{M}(B \otimes K) \) will be a unitaly absorbing trivial extension. The general trivial absorbing extensions can then be obtained (for a not necessarily unital \(C^* \)-algebra \(A \)) by taking a unitaly absorbing representation \(\pi : A^+ \to \mathcal{M}(B \otimes K) \) and restricting it to \(A \).

In order to illustrate how the absorbing \(* \)-homomorphisms constructed here can be used to extend known results we prove a general version of the Paschke-Valette-Skandalis duality which realizes the group \(KK(A, B) \) as the \(K_1 \)-group of a \(C^* \)-algebra \(D_n \) built out of \(A \) and \(B \) by using an absorbing \(* \)-homomorphism \(\pi : A \to \mathcal{M}(B) \); cf. \([P, V, S, H] \).

2. Absorbing \(* \)-Homomorphisms

Given Hilbert \(B \)-modules \(E \) and \(F \), we let \(\mathcal{L}_B(E, F) \) denote the Banach space of adjoinable operators from \(E \) to \(F \). The ideal of ‘compact’ operators from \(E \) to \(F \) is denoted by \(\mathcal{K}_B(E, F) \). When \(E = F \) we write \(\mathcal{L}_B(E) \) and \(\mathcal{K}_B(E) \) instead of \(\mathcal{L}_B(E, E) \) and \(\mathcal{K}_B(E, E) \), respectively. In the special case where \(E = B \) there are well-known identifications \(\mathcal{L}_B(B) = \mathcal{M}(B) = \) the multiplier algebra of \(B \) and \(\mathcal{K}_B(B) = B \), which we shall use freely.

Theorem 2.1. Let \(A \) and \(B \) be separable \(C^* \)-algebras with \(A \) unital and \(B \) stable. Let \(\pi : A \to \mathcal{M}(B) \) be a unital \(* \)-homomorphism. Then the following conditions are equivalent:

1) For any completely positive contraction \(\varphi : A \to B \) there is a sequence \(\{W_n\} \subseteq \mathcal{M}(B) \) such that
 a) \(\lim_{n \to \infty} \|\varphi(a) - W_n^* \pi(a) W_n\| = 0 \) for all \(a \in A \),
 b) \(\lim_{n \to \infty} \|W_n^*\| = 0 \) for all \(b \in B \).

2) For any completely positive unital map \(\varphi : A \to \mathcal{M}(B) \) there is a sequence \(\{V_n\} \) of isometries in \(\mathcal{M}(B) \) such that
 a) \(V_n^* \pi(a) V_n - \varphi(a) \in B \), \(n \in \mathbb{N} \), \(a \in A \),
 b) \(\lim_{n \to \infty} \|V_n^* \pi(a) V_n - \varphi(a)\| = 0 \), \(a \in A \).

3) For any unital \(* \)-homomorphism \(\varphi : A \to \mathcal{M}(B) \) there is a sequence \(\{U_n\} \) of unitaries \(U_n \in \mathcal{L}_B(B \oplus B, B) \) such that
 a) \(U_n \begin{pmatrix} \pi(a) & 0 \\ 0 & \varphi(a) \end{pmatrix} U_n^* - \pi(a) \in B \), \(n \in \mathbb{N} \), \(a \in A \),
 b) \(\lim_{n \to \infty} \|U_n \begin{pmatrix} \pi(a) & 0 \\ 0 & \varphi(a) \end{pmatrix} U_n^* - \pi(a)\| = 0 \), \(a \in A \).

4) For any unital \(* \)-homomorphism \(\varphi : A \to \mathcal{M}(B) \) there is a sequence \(\{U_n\} \) of unitaries \(U_n \in \mathcal{L}_B(B \oplus B, B) \) such that
 \[\lim_{n \to \infty} \|U_n \begin{pmatrix} \pi(a) & 0 \\ 0 & \varphi(a) \end{pmatrix} U_n^* - \pi(a)\| = 0 \), \(a \in A \).

Proof. 1) \(\Rightarrow \) 2): Let \(F \subseteq A \) be a finite set containing \(1 \) and \(\epsilon > 0 \). Let \(\varphi : A \to \mathcal{M}(B) \) be a completely positive unital map. It suffices to find an element \(V \in \mathcal{M}(B) \) such that

\[(2.1) \quad V^* \pi(a) V - \varphi(a) \in B \]
for all \(a \in A \) and
\[
\|V^* \pi(x) V - \varphi(x)\| < 3\epsilon
\]
for all \(x \in F \). If namely \(\epsilon \) is small enough this will imply that \(W = V[V^* V]^{-1} \) is an isometry close to \(V \) such that \(V - W \in B \), and we can then work with \(W \) instead of \(V \). We repeat Kasparov’s arguments: Let \(X \) be a compact subset of \(A \) containing \(F \) and with dense span in \(A \). By Lemma 10 of [K] there is a sequence \(\psi_k : A \to B, k \in \mathbb{N} \), of completely positive contractions such that \(\psi(a) = \sum_{k=1}^\infty \psi_k(a) \) converges in the strict topology, \(\varphi(a) - \psi(a) \in B \) for all \(a \in A \), and \(\|\varphi(x) - \psi(x)\| < \epsilon \) for all \(x \in X \). Let \(\{b_n\} \) be a countable approximate unit for \(B \). It follows from 1) that we can find a sequence \(\{m_i\} \subseteq B \) such that
1) \(\|\psi_i(x) - m^*_i \pi(x) m_i\| \leq \epsilon 2^{-i}, \ x \in X, \ i \in \mathbb{N}, \)
2) \(\|m^*_i \pi(x) m_i\| \leq \epsilon 2^{-i-j}, \ x \in X, \ i, j \in \mathbb{N}, \ i \neq j, \)
3) \(\sum_{i=1}^\infty \|m^*_i b_k\| < \infty \) for all \(k \in \mathbb{N} \).

The argument from the proof of Theorem 5 in [K] shows that \(\sum_{i=1}^\infty m_i \) converges in the strict topology to an element \(V \in \mathcal{M}(B) \) satisfying (2.1) and (2.2).

2) \(\Rightarrow \) 3): This follows from the arguments of Arveson given on pp. 338-339 of [A] by substituting Hilbert spaces with Hilbert \(B \)-modules. We leave this to the reader.

3) \(\Rightarrow \) 4) is trivial.

4) \(\Rightarrow \) 1): Let \(\varphi : A \to B \) be a completely positive contraction. Let \(F \subseteq A \) and \(G \subseteq B \) be finite sets and \(\epsilon > 0 \). Since \(A \) and \(B \) are separable it suffices to find an element \(L \in \mathcal{M}(B) \) such that \(\|\varphi(a) - L^* \pi(a)L\| < \epsilon \), \(a \in F \), and \(\|Lb\| < \epsilon \) for all \(b \in B \). By Kasparov’s Stinespring theorem (Theorem 3 of [K]), there is a unital \(* \)-homomorphism \(\chi : A \to \mathcal{M}(B) \) and an element \(W \in \mathcal{M}(B) \) such that \(\varphi(\cdot) = W^* \chi(\cdot) W \). Let \(S_i, i = 1, 2, 3, \ldots \), be a sequence of isometries in \(\mathcal{M}(B) \) such that \(S^*_i S_i = 0 \), \(i \neq j \), and \(\sum_{i=1}^\infty S^*_i S_i = 1 \) in the strict topology, and set \(\chi^\infty(a) = \sum_{i=1}^\infty S_i \pi(a) S^*_i \). It follows from 4) that there is a sequence \(\{U_n\} \) of unitaries in \(\mathcal{L}_B(B \oplus B, B) \) such that
\[
\lim_{n \to \infty} \|U_n \begin{pmatrix} \pi(a) & 0 \\ 0 & \chi^\infty(a) \end{pmatrix} U^*_n - \pi(a)\| = 0, \quad a \in A.
\]
Define \(T_i : B \to B \oplus B \) by \(T_i b = (0, S_i b) \). Then \(\chi(a) = T^*_i \begin{pmatrix} \pi(a) & 0 \\ 0 & \chi^\infty(a) \end{pmatrix} T_i \) and
\[
\varphi(a) = W^* T^*_i \begin{pmatrix} \pi(a) & 0 \\ 0 & \chi^\infty(a) \end{pmatrix} T_i W \text{ for all } a \text{ and } i.
\]
Choose \(n \) so large that
\[
\| \begin{pmatrix} \pi(a) & 0 \\ 0 & \chi^\infty(a) \end{pmatrix} - U^*_n \pi(a) U_n \| < \frac{\epsilon}{1 + \|W\|^2}, \quad a \in F.
\]
Then
\[
\|\varphi(a) - W^* T^*_i U^*_n \pi(a) U_n T_i W\| < \epsilon, \quad a \in F.
\]
for all \(i \). Since \(\lim_{m \to \infty} \|T^*_i x\| = 0 \) for all \(x \in B \oplus B \), we can choose \(i \) so large that \(\|W^* T^*_i U^*_n b\| < \epsilon \) for all \(b \in G \). Set \(L = U_n T_i W \).

Definition 2.2. Let \(A \) and \(B \) be separable \(C^* \)-algebras with \(A \) unital and \(B \) stable. A unital \(* \)-homomorphism \(\pi : A \to \mathcal{M}(B) \) which satisfies the four equivalent conditions in Theorem [2.1] is called *unitaly absorbing* (for \((A, B) \)).
The following lemma is surely known, but it is so crucial for us here that we include a proof.

Lemma 2.3. Let A and B be separable C^*-algebras. There is then a countable set X of completely positive contractions $A \to B$ such that for any completely positive contraction $\mu : A \to B$, any finite set $F \subseteq A$ and any $\epsilon > 0$ there is an element $l \in X$ such that
\[
\|\mu(f) - l(f)\| \leq \epsilon, \quad f \in F.
\]

Proof. Let $\{a_1, a_2, a_3, \cdots\}$ be a dense sequence in the unit ball of A and set $F_n = \text{span}\{a_1, a_2, \cdots, a_n\}$. Let ω be a faithful state of A and let (π_ω, H_ω) be the GNS-representation coming from ω. We can then consider A as a subspace of H_ω. The orthogonal projection $P_n : H_\omega \to F_n$ gives us then by restriction a continuous idempotent map $P_n : A \to F_n$. Let $1 < m_1 < m_2 < m_3 < \cdots$ be a sequence of numbers such that $\|P_n\| \leq m_n$ for all n. We can then define a metric d on the space $B(A,B)$ of continuous linear maps $L : A \to B$ by
\[
d(L_1, L_2) = \sum_{i=1}^\infty \frac{2^{-i}}{m_i} \|L_1(a_i) - L_2(a_i)\|.
\]

Choose a linear basis $\{x_1, x_2, \cdots, x_{n_0}\}$ for F_{n_0}. For each n_0-tuple $b = (b_1, b_2, \cdots, b_{n_0})$ in B^{n_0} there is a linear map $L_b : F_{n_0} \to B$ such that $L_b(x_i) = b_i$, $i = 1, 2, \cdots, n_0$.

By using that B^{n_0} is separable this construction gives us a countable set M of linear maps $F_n \to B$ which is dense in the strong topology of $B(F_n, B)$. Now let $0 < \epsilon < 1$ and let a finite set $D \subseteq F_n$ be given. Let $\mu \in B(F_n, B)$ be a contraction. There is then a countable set G of F_n such that every $x \in F_n$ with $\|x\| \leq 1 - \epsilon$ is a convex combination of elements from G. Choose $l \in M$ such that
\[
(2.3) \quad \|\mu(z) - l(z)\| < \epsilon, \quad z \in D \cup G.
\]

Then $\|\mu(x) - l(x)\| \leq \epsilon$ for all $x \in F_n$ with $\|x\| \leq 1 - \epsilon$, and hence $\|l\| \leq \frac{1 + \epsilon}{1 - \epsilon}$. Let q be a positive rational number in $\left|\frac{1 - \epsilon}{1 + \epsilon}, \frac{1 + \epsilon}{1 - \epsilon}\right|$. Then $ql \in \mathbb{Q}_+M$ is a contraction and we find that
\[
\begin{align*}
\|\mu(z) - ql(z)\| &\leq \|\mu(z) - l(z)\| + \|l(z) - ql(z)\| \\
&\leq \epsilon + |1 - q||l| \sup \{\|z\| : z \in D\} \\
&< \frac{2\epsilon + 2\epsilon^2}{1 - \epsilon^2} \sup \{\|z\| : z \in D\} + \epsilon
\end{align*}
\]
for all $z \in D$. It follows that we can find a countable set $\mathcal{Y}_n \subseteq \mathbb{Q}_+M$ of linear contractions which is strongly dense among all contractions in $B(F_n, B)$. Set
\[
\mathcal{Y} = \bigcup_{n=1}^\infty \{l \circ P_n : l \in \mathcal{Y}_n\}.
\]

Let $\mu : A \to B$ be a linear contraction and let $\epsilon > 0$. Choose n so large that $2 \sum_{i \geq n+1} 2^{-i} < \frac{\epsilon}{2}$. From what we have just proved there is an element $l \in \mathcal{Y}_n$ such that
\[
\|\mu(a_i) - l(a_i)\| < \frac{\epsilon}{2}, \quad i = 1, 2, \cdots, n.
\]
Then \(l \circ P_n \in \mathcal{Y} \) and

\[
d(\mu, l \circ P_n) \leq \sum_{i=1}^{n} \frac{2^{-i} \epsilon}{m_i} + \sum_{i=n+1}^{\infty} \frac{2^{-i}}{m_i} (1 + \|P_n\|)
\]

\[
\leq \frac{\epsilon}{2} + \sum_{i=n+1}^{\infty} \frac{2^{-i}}{m_i} (1 + m_i) \leq \epsilon.
\]

It follows that \(\mathcal{Y} \) is a countable set in \(B(A, B) \) with the property that for any linear contraction \(\mu : A \to B \) and any \(\epsilon > 0 \) there is an element \(l \in \mathcal{Y} \) such that \(d(\mu, l) < \epsilon \). For each \(l \in \mathcal{Y} \) choose a completely positive contraction \(l' : A \to B \) such that

\[
d(l, l') \leq 2 \inf \{d(l, L) : L \in B(A, B) \text{ is a completely positive contraction}\}.
\]

Then \(\mathcal{Y}' = \{l' : l \in \mathcal{Y}\} \) is a countable set of completely positive contractions in \(B(A, B) \) with the property that for any completely positive linear contraction \(\mu : A \to B \) and any \(\epsilon > 0 \) there is an element \(l \in \mathcal{Y}' \) such that \(d(\mu, l) < \epsilon \). \(\square \)

Theorem 2.4. Let \(A \) and \(B \) be separable \(C^* \)-algebras. Assume that \(B \) is stable and \(A \) unital. Then there exists a unitaly absorbing \(*\)-homomorphism \(\pi : A \to \mathcal{M}(B) \) for \((A, B)\).

Proof. By Lemma 2.3 there is a dense sequence \(\{s_n\} \) in the set of completely positive contractions from \(A \) to \(B \). We may assume that each \(s_n \) is repeated infinitely often in this sequence. By Kasparov’s Stinespring Theorem (Theorem 3 of [K]), there are elements \(V_n \in \mathcal{M}(B) \) and unital \(*\)-homomorphisms \(\pi_n : A \to \mathcal{M}(B) \) such that

\[
s_n(\cdot) = V_n^* \pi_n(\cdot) V_n
\]

for all \(n \). Note that \(\|V_n\|^2 = \|V_n^* V_n\| = \|s_n(1)\| \leq 1 \) for all \(n \). Define a unital \(*\)-homomorphism \(\pi_\infty : A \to \mathcal{L}_B(l_2(B)) \) by

\[
\pi_\infty(a)(b_1, b_2, b_3, \cdots) = (\pi_1(a)b_1, \pi_2(a)b_2, \pi_3(a)b_3, \cdots).
\]

Define \(L_n \in \mathcal{L}_B(B, l_2(B)) \) by

\[
L_n b = (0, 0, \cdots, 0, V_n b, 0, 0, \cdots),
\]

where the non-trivial entry occurs at the \(n \)'th coordinate. Since we repeated the \(s_n \)'s infinitely often there is, for each \(n \), a sequence \(k_1 < k_2 < k_3 < \cdots \) in \(\mathbb{N} \) such that

\[
s_n(a) = L_{k_i}^* \pi_\infty(a)L_{k_i}
\]

for all \(a \in A, i \in \mathbb{N} \), and

\[
\lim_{i \to \infty} \|L_{k_i}^* \psi\| = 0, \quad \psi \in l_2(B).
\]

By Lemma 1.3.2 of [KJT] there is an isomorphism \(S : l_2(B) \to B \) of Hilbert \(B \)-modules. Set \(T_n = S L_n \in \mathcal{M}(B) \) and \(\pi(\cdot) = S \pi_\infty(\cdot) S^* \). We assert that \(\pi \) satisfies condition 1) of Theorem 2.1 and to prove it we let \(\varphi : A \to B \) be a completely positive contraction. In order to construct a sequence \(\{W_n\} \) in \(\mathcal{M}(B) \) such that 1a) and 1b) of Theorem 2.1 hold it suffices, because \(A \) and \(B \) are separable, to pick \(\epsilon > 0 \) and finite subsets \(F_1 \subseteq A \) and \(F_2 \subseteq B \) and find an element \(W \in \mathcal{M}(B) \) such that

\[
\|\varphi(a) - W^* \pi(a)W\| < \epsilon, \quad a \in F_1, \quad \text{and} \quad \|W^* b\| < \epsilon, \quad b \in F_2.
\]

Choose first an \(n \in \mathbb{N} \) such that \(\|\varphi(a) - s_n(a)\| < \epsilon, \quad a \in F_1 \). If we then choose \(k_1 < k_2 < k_3 < \cdots \)
such that (2.3) and (2.5) hold we have that $T^*_k \pi(a) T_k = s_n(a)$ for all $a \in F_1$ and $\|T^*_k b\| < \varepsilon$ for all $b \in F_2$, provided only that i is large enough. We can then set $W = T_k$, for such an i.

We now turn to the case of a not necessarily unital C^*-algebra A and the general notion of absorbing $*$-homomorphisms. Given a C^*-algebra A we denote in the following by A^+ the C^*-algebra obtained by adding a unit to A. Let B be another C^*-algebra. Any linear completely positive contraction $\varphi : A \to \mathcal{M}(B)$ admits a unique linear extension $\varphi^+ : A^+ \to \mathcal{M}(B)$ such that $\varphi^+(1) = 1$. φ^+ is automatically a completely positive contraction (cf. e.g. Lemma 3.2.8 of [KJT]), and is automatically a $*$-homomorphism when φ is. The following theorem is therefore an immediate consequence of Theorem 2.4.

Theorem 2.5. Let A and B be separable C^*-algebras with B stable. Let $\pi : A \to \mathcal{M}(B)$ be a $*$-homomorphism. Then the following conditions are equivalent:

1) $\pi^+ : A^+ \to \mathcal{M}(B)$ is unitally absorbing for (A^+, B).

2) For any completely positive contraction $\varphi : A \to \mathcal{M}(B)$ there is a sequence $\{V_n\}$ of isometries in $\mathcal{M}(B)$ such that
 2a) $V^*_n \pi(a) V_n - \varphi(a) \in B$, $n \in \mathbb{N}$, $a \in A$,
 2b) $\lim_{n \to \infty} \|V^*_n \pi(a) V_n - \varphi(a)\| = 0$, $a \in A$.

3) For any $*$-homomorphism $\varphi : A \to \mathcal{M}(B)$ there is a sequence $\{U_n\}$ of unitaries $U_n \in \mathcal{L}_B(B \oplus B, B)$ such that
 3a) $U_n \begin{pmatrix} \pi(a) & 0 \\ 0 & \varphi(a) \end{pmatrix} U^*_n - \pi(a) \in B$, $n \in \mathbb{N}$, $a \in A$,
 3b) $\lim_{n \to \infty} \|U_n \begin{pmatrix} \pi(a) & 0 \\ 0 & \varphi(a) \end{pmatrix} U^*_n - \pi(a)\| = 0$, $a \in A$.

4) For any $*$-homomorphism $\varphi : A \to \mathcal{M}(B)$ there is a sequence $\{U_n\}$ of unitaries $U_n \in \mathcal{L}_B(B \oplus B, B)$ such that
 $\lim_{n \to \infty} \|U_n \begin{pmatrix} \pi(a) & 0 \\ 0 & \varphi(a) \end{pmatrix} U^*_n - \pi(a)\| = 0$, $a \in A$.

Definition 2.6. Let A and B be separable C^*-algebras with B stable. A $*$-homomorphism $\pi : A \to \mathcal{M}(B)$ is absorbing (for (A, B)) when it satisfies the four equivalent conditions of Theorem 2.5.

Theorem 2.7. Let A and B be separable C^*-algebras with B stable. There exists an absorbing $*$-homomorphism $\pi : A \to \mathcal{M}(B)$ for (A, B).

Proof. Combine Theorem 2.5 and Theorem 2.4.

An absorbing $*$-homomorphism is clearly unique in the following sense: Given two absorbing $*$-homomorphisms $\pi_1, \pi_2 : A \to \mathcal{M}(B)$ there is a sequence $\{U_n\} \subseteq \mathcal{M}(B)$ of unitaries such that $U_n \pi_1(a) U^*_n - \pi_2(a) \in B$, $a \in A$, $n \in \mathbb{N}$, and $\lim_{n \to \infty} U_n \pi_1(a) U^*_n - \pi_2(a) = 0$, $a \in A$.

3. Duality in KK-theory

Throughout this section A and B will be separable C^*-algebras and B will be stable. A $*$-homomorphism $\pi : A \to \mathcal{M}(B)$ is of infinite multiplicity when π is unitarily equivalent to π^∞, where $\pi^\infty : A \to \mathcal{M}(B)$ is the $*$-homomorphism given by $\pi^\infty(a) = \sum_{i=1}^\infty S_i \pi(a) S_i^*$, for some sequence S_i, $i \in \mathbb{N}$, of isometries in $\mathcal{M}(B)$ such that $S_i^* S_j = 0$, $i \neq j$, and $\sum_{i=1}^\infty S_i S_i^* = 1$ in the strict topology.
Lemma 3.1. Let \(\pi : A \to \mathcal{M}(B) \) be a \(*\)-homomorphism of infinite multiplicity and set
\[
E = \{ m \in \mathcal{M}(B) : m\pi(a) = \pi(a)m \ \forall a \in A \}.
\]
Then \(K_*(E) = \{0\} \).

Proof. Since \(\pi \) has infinite multiplicity,
\[
E \simeq \{ m \in \mathcal{L}_B(l_2(B)) : m\mu(a) = \mu(a)m \ \forall a \in A \}
\]
where \(\mu : A \to \mathcal{L}_B(l_2(B)) \) is given by
\[
\mu(a)(b_1, b_2, b_3, \cdots) = (\pi(a)b_1, \pi(a)b_2, \pi(a)b_3, \cdots).
\]
The usual proof that \(K_*(\mathcal{L}_B(l_2(B))) = 0 \) works to show that \(K_*(E) = 0 \); cf. e.g. Proposition 12.2.1 of [3].

Given an absorbing \(*\)-homomorphism \(\pi : A \to \mathcal{M}(B) \) we set
\[
C_\pi = \{ x \in \mathcal{M}(B) : x\pi(a) - \pi(a)x \in B, a \in A \}
\]
and
\[
A_\pi = \{ x \in C_\pi : x\pi(A) \subseteq B \}.
\]
Then \(A_\pi \) is a closed two-sided ideal in \(C_\pi \) and we set \(D_\pi = C_\pi/A_\pi \). The quotient map \(C_\pi \to D_\pi \) will be denoted by \(q \). If \(\tau : A \to \mathcal{M}(B) \) is another absorbing \(*\)-homomorphism there is a unitary \(w \in \mathcal{M}(B) \) such that \(\text{Ad} \, w \circ \pi(a) - \tau(a) \in B \) for all \(a \in A \) and then \(x \mapsto wxw^* \) defines a \(*\)-isomorphism of \(C_\pi \) onto \(C_\tau \) which takes \(A_\pi \) onto \(A_\tau \). In particular, \(D_\pi \simeq D_\tau \).

Let \(u \) be a unitary in \(M_n(D_\pi) \). Choose \(v \in M_n(C_\pi) \) such that \(\text{id}_{M_n} \otimes q(v) = u \). Define \(\pi^n : A \to \mathcal{L}_B(B^n) \) by \(\pi^n(a)(b_1, b_2, \cdots, b_n) = (\pi(a)b_1, \pi(a)b_2, \cdots, \pi(a)b_n) \). Let \(B^n \oplus B^n \) be graded by \((x, y) \mapsto (x, -y) \). Then
\[
(B^n \oplus B^n, (\pi^n, (\pi^n)^*))
\]
is a Kasparov \(A - B \)-module. We leave it to the reader to check that the class of this module in \(KK(A, B) \) only depends on the class of \(u \) in \(K_1(D_\pi) \), and that the construction gives rise to a group homomorphism \(\Theta : K_1(D_\pi) \to KK(A, B) \).

Theorem 3.2. Assume that \(\pi : A \to \mathcal{M}(B) \) is an absorbing \(*\)-homomorphism. Then \(\Theta : K_1(D_\pi) \to KK(A, B) \) is an isomorphism.

Proof. When \(\tau \) is another absorbing \(*\)-homomorphism there is a commuting diagram
\[
\begin{array}{ccc}
K_1(D_\pi) & \xrightarrow{\Theta} & KK(A, B) \\
\downarrow & & \\
K_1(D_\tau) & &
\end{array}
\]
where \(K_1(D_\pi) \to K_1(D_\tau) \) is induced by the isomorphism \(D_\pi \to D_\tau \) described above, and \(K_1(D_\tau) \to KK(A, B) \) is the map obtained by using \(\tau \) instead of \(\pi \) in the definition of \(\Theta \). Indeed if one considers a specific unitary in \(M_n(D_\pi) \), the Kasparov \(A - B \)-module which results by going down and up in the diagram differs from the one which arises by going across by an isomorphism and a compact perturbation.

Thus if we prove that \(\Theta : K_1(A_\pi) \to KK(A, B) \) is an isomorphism for one absorbing
*-homomorphism \(\pi \) it will follow that it is an isomorphism for any other. Hence by working with \(\pi^{\infty} \) instead of \(\pi \) we may assume that \(\pi \) is of infinite multiplicity.

\(\Theta \) is injective: Let \(u \in M_n(D_{n}) \) be a unitary and choose \(v \in M_n(C_{\pi}) \) such that \(id_{M_n} \otimes q(v) = u \). Assume that \([B^n \oplus B^n, (\pi^n, \pi^n), (\nu^n, \nu^n)] = 0 \) in KK(\(A, B \)). This means that there are degenerate Kasparov \(A - B \)-modules \(D_1 \) and \(D_2 \) such that \((B^n \oplus B^n, (\pi^n, \pi^n), (\nu^n, \nu^n)) \oplus D_1 \) is operator homotopic to \((B^n \oplus B^n, (\pi^n, \pi^n), (1, 1)) \oplus D_2 \). Since \(D_1 \) and \(D_2 \) are degenerate we can define a new degenerate Kasparov \(A - B \)-module \(D \) by \(D = D_1 \oplus D_2 \oplus D_1 \oplus D_2 \oplus D_2 \oplus \cdots \). Then \(D_1 \oplus D \) and \(D_2 \oplus D \) are both isomorphic to \(D \) and hence \((B^n \oplus B^n, (\pi^n, \pi^n), (\nu^n, \nu^n)) \oplus D \) is operator homotopic to \((B^n \oplus B^n, (\pi^n, \pi^n), (1, 1)) \oplus D \). By combining Kasparov’s stabilization theorem (Theorem 2.12 of [KJT]) with Lemma 1.3.2 of [KJT] we may assume that \(a = w \) and \(b = w^* \) for some unitary \(w \in \mathcal{M}(B) \). Finally, by applying the unitary of the Hilbert \(B \)-module \(A \oplus B \) given by \((x, y) \mapsto (x, wy) \), we see that we can assume that \(w = 1 \).

So all in all we have that

\[
(B^n \oplus B^n, (\pi^n, \pi^n), (\nu^n, \nu^n)) \oplus (B \oplus B, (\lambda^+, \lambda^-), (1, 1))
\]

is operator homotopic to

\[
(B^n \oplus B^n, (\pi^n, \pi^n), (1, 1)) \oplus (B \oplus B, (\lambda^+, \lambda^-), (1, 1)).
\]

Note that \(\lambda^+ = \lambda^- \) since \((B \oplus B, (\lambda^+, \lambda^-), (1, 1)) \) is degenerate. Finally, by adding on an infinite number of copies of \((B \oplus B, (\lambda^+, \lambda^-), (1, 1)) \) we find that there is a *-homomorphism of infinite multiplicity \(\lambda : A \rightarrow \mathcal{M}(B) \) such that

\[
(B^n \oplus B^n, (\pi^n, \pi^n), (\nu^n, \nu^n)) \oplus (B \oplus B, (\lambda, \lambda), (1, 1))
\]

is operator homotopic to

\[
(B^n \oplus B^n, (\pi^n, \pi^n), (1, 1)) \oplus (B \oplus B, (\lambda, \lambda), (1, 1)).
\]

Furthermore, by adding on \((B \oplus B, (\pi^n, (1, 1))) \) we may assume that there is a unitary \(w \in \mathcal{M}(B) \) such that \(w\lambda(a)w^* - \pi(a) \in B, a \in A \). The operator homotopy consists of an isomorphism of Kasparov \(A - B \) modules and a norm-continuous path of operators. The isomorphism gives us a unitary \(S \in M_{n+1}(\mathcal{M}(B)) \) such that \(S \left(\begin{array}{cc} \pi^n(a) & \lambda(a) \\ \lambda(a) & \pi^n(a) \end{array} \right) S \) for all \(a \in A \), and in addition we have a norm-continuous path \(F_t, t \in [0, 1] \), in \(M_{n+1}(\mathcal{M}(B)) \) such that \(F_0 = S, F_1 = (\nu, 1), \) and \((F_t F_t^* - 1_{n+1}) \left(\begin{array}{cc} \pi^n(a) & \lambda(a) \\ \lambda(a) & \pi^n(a) \end{array} \right), (F_t^* F_t - 1_{n+1}) \left(\begin{array}{cc} \pi^n(a) & \lambda(a) \\ \lambda(a) & \pi^n(a) \end{array} \right), (F_t F_t^*) - \left(\begin{array}{cc} \pi^n(a) & \lambda(a) \\ \lambda(a) & \pi^n(a) \end{array} \right) \) are in \(M_{n+1}(B) \) for all \(t \) and \(a \). Here and in the following we let \(1_k \) denote the unit of \(M_k(\mathcal{M}(B)) \). Note that \(\nu = (\pi^n, \lambda) \) is of infinite multiplicity, as a *-homomorphism \(A \rightarrow \mathcal{M}(M_{n+1}(B)) \), since \(\pi \) and \(\lambda \) both are of infinite multiplicity.

By Lemma 3.1 we can therefore find an \(m \in \mathbb{N} \) and a norm-continuous path of unitaries in \(\{x \in M_{m(n+1)}(\mathcal{M}(B)) : x \pi^m(a) = \pi^m(a)x, a \in A \} \) connecting

\[
\left(\begin{array}{cc} 1_{m(n+1)}(a) & 1_{m(n+1)}(a) \\ 1_{m(n+1)}(a) & 1_{m(n+1)}(a) \end{array} \right)
\]

to \(1_{m(n+1)} \). In combination with \(F \) this gives us a norm-continuous path \(H_t, t \in [0, 1], \) in \(M_{m(n+1)}(\mathcal{M}(B)) \) such that \(H_0 = 1_{m(n+1)}, H_1 = (\nu_{m(n+1)}, 1_{m(n+1)}), (H_t H_t^* - 1_{m(n+1)}) \pi^m(a), (H_t^* H_t - 1_{m(n+1)}) \pi^m(a), H_t \pi^m(a) - \pi^m(a) \) are in \(M_{m(n+1)}(B) \) for all \(t \) and \(a \). Set

\[
W = \text{diag}(1, n, w, 1, n, w, \cdots, 1, n, w) \in M_{m(n+1)}(\mathcal{M}(B))
\]
and \(G_t = WH_tW^* \). Then \(G_t \) is a norm-continuous path in \(M_m(n+1)(\mathcal{M}(B)) \) such that \(G_0 = 1_m(n+1) \), \(G_1 = (\tau_1 1_m(n+1) - \tau_2) \) and \((G_tG_t^* - 1_m(n+1))^{\pi(n+1)}(a), \), \((G_tG_t^* - 1_m(n+1))^{\pi(n+1)}(a), \) \(G_t^{\pi(n+1)}(a) - \pi(n+1)(a)G_t \) are in \(M_m(n+1)(B) \) for all \(t \) and \(a \). Thus \((\text{id}_{M_m(n+1)} \otimes q)(G_t) \) is a path of unitaries in \(M_m(n+1)(\mathcal{D}) \) connecting \((\tau_1 1_m(n+1) - \tau_2) \) to \(1_m(n+1) \).

\(\Theta \) is surjective: Let \((E, \psi, F) \) be a Kasparov \(A-B \)-module. The constructions on pages 125-126 of [KJT] show that \([E, \psi, F] \in KK(A, B)\) is also represented by a Kasparov \(A-B \)-module of the form \((B \oplus B, (\varphi_+, \varphi_+), (\varphi, \varphi))\) for some \(+\)-homomorphisms \(\varphi_\pm : A \rightarrow \mathcal{M}(B) \) and some unitary \(\psi \in \mathcal{M}(B) \). Using the trick from p. 354 of [H] we may assume that \(\varphi_- = \varphi_+ = \varphi \). By adding on \((B \oplus B, (\pi, 1)), (\varphi, \varphi)\) and using that \(\pi \) is absorbing we may assume that there is a unitary \(u \in \mathcal{M}(B) \) such that \(u\varphi(a)u^* - \pi(a) \in B \) for all \(a \in A \). Then \((B \oplus B, (\pi, 1)), (\varphi, \varphi)\) is isomorphic to

\[
\begin{align*}
(B \oplus B, \left(\begin{array}{cc}
Ad u \varphi & \Ad u \varphi \\
Avu^* & uu^*
\end{array} \right),
(uv^* u^* uv^*) \end{align*}
\]

which in turn is a compact perturbation of \((B \oplus B, (\pi, 1)), (uv^* u^* uv^*)\). Then \(uvu^* \) is a unitary \(C_\pi \) such that \(\Theta([q(\psi)] = [E, \psi, F] \in KK(A, B) \).

Of course there is also an isomorphism

\[
K_0(D_\pi) \simeq \text{Ext}^{-1}(A, B)
\]

which can be proved in basically the same way.

References

Institut for Matematisk Fak, Ny Munkegade, 8000 Aarhus C, Denmark

E-mail address: matkk@imf.au.dk