Duality of the weak essential norm
HTML articles powered by AMS MathViewer
- by Hans-Olav Tylli PDF
- Proc. Amer. Math. Soc. 129 (2001), 1437-1443 Request permission
Abstract:
It is established by an example that the natural quotient norms $S \mapsto \mathrm {dist}(S,W(E,F))$ and $S \mapsto \mathrm {dist}(S^{*},W(F^{*},E^{*}))$ are not comparable in general. Hence there is no uniform quantitative version of Gantmacher’s duality theorem for weakly compact operators in terms of the preceding weak essential norm. Above $W(E,F)$ stands for the class of weakly compact operators $E\to F$, where $E$ and $F$ are Banach spaces. The counterexample is based on a renorming construction related to weakly compact approximation properties that is applied to the Johnson-Lindenstrauss space $JL$.References
- A. G. Aksoy and L. Maligranda, Real interpolation and measure of weak noncompactness, Math. Nachr. 175 (1995), 5–12. MR 1355009, DOI 10.1002/mana.19951750102
- Kari Astala, On measures of noncompactness and ideal variations in Banach spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 29 (1980), 42. MR 575533
- Kari Astala and Hans-Olav Tylli, On the bounded compact approximation property and measures of noncompactness, J. Funct. Anal. 70 (1987), no. 2, 388–401. MR 874062, DOI 10.1016/0022-1236(87)90118-2
- Kari Astala and Hans-Olav Tylli, Seminorms related to weak compactness and to Tauberian operators, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 367–375. MR 1027789, DOI 10.1017/S0305004100068638
- P. G. Casazza and H. Jarchow, Self-induced compactness in Banach spaces, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 2, 355–362. MR 1386867, DOI 10.1017/S0308210500022770
- Jesús M. F. Castillo and Manuel González, Three-space problems in Banach space theory, Lecture Notes in Mathematics, vol. 1667, Springer-Verlag, Berlin, 1997. MR 1482801, DOI 10.1007/BFb0112511
- F. Cobos, A. Manzano and A. Martinez, Interpolation theory and measures related to operator ideals, Quart. J. Math. 50 (1999), 401-416.
- F. Cobos and A. Martinez, Extreme estimates for interpolated operators by the real method, J. London Math. Soc. 60 (1999), 860–870.
- T. Figiel and W. B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc. 41 (1973), 197–200. MR 341032, DOI 10.1090/S0002-9939-1973-0341032-5
- Manuel González, Eero Saksman, and Hans-Olav Tylli, Representing non-weakly compact operators, Studia Math. 113 (1995), no. 3, 265–282. MR 1330211, DOI 10.4064/sm-113-3-265-282
- Niels Grønbæk and George A. Willis, Approximate identities in Banach algebras of compact operators, Canad. Math. Bull. 36 (1993), no. 1, 45–53. MR 1205894, DOI 10.4153/CMB-1993-008-8
- W. B. Johnson and J. Lindenstrauss, Correction to: “Some remarks on weakly compactly generated Banach spaces” [Israel J. Math. 17 (1974), 219–230; MR 54 #5808], Israel J. Math. 32 (1979), no. 4, 382–383. MR 571092, DOI 10.1007/BF02760467
- Å. Lima, O. Nygaard and E. Oja, Isometric factorization of weakly compact operators and the approximation property, Israel J. Math. (to appear)
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253
- Michael J. Meyer, On a topological property of certain Calkin algebras, Bull. London Math. Soc. 24 (1992), no. 6, 591–598. MR 1183316, DOI 10.1112/blms/24.6.591
- Michael J. Meyer, Lower bounds for norms on certain algebras, Illinois J. Math. 39 (1995), no. 4, 567–575. MR 1361520
- A. N. Pličko, Some properties of a Johnson-Lindenstrauss space, Funktsional. Anal. i Prilozhen. 15 (1981), no. 2, 88–89 (Russian). MR 617482
- O. I. Reĭnov, How bad can a Banach space with the approximation property be?, Mat. Zametki 33 (1983), no. 6, 833–846 (Russian). MR 709222
- Hans-Olav Tylli, The essential norm of an operator is not self-dual, Israel J. Math. 91 (1995), no. 1-3, 93–110. MR 1348307, DOI 10.1007/BF02761641
- P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge, 1991. MR 1144277, DOI 10.1017/CBO9780511608735
Additional Information
- Hans-Olav Tylli
- Affiliation: Department of Mathematics, University of Helsinki, P. O. Box 4 (Yliopistonkatu 5), FIN-00014 University of Helsinki, Finland
- Email: hojtylli@cc.helsinki.fi
- Received by editor(s): August 17, 1999
- Published electronically: October 24, 2000
- Communicated by: Dale Alspach
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 1437-1443
- MSC (2000): Primary 47A30, 46B20, 46B28
- DOI: https://doi.org/10.1090/S0002-9939-00-05937-2
- MathSciNet review: 1814170