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GENERALIZED LITTLE q-JACOBI POLYNOMIALS
AS EIGENSOLUTIONS OF HIGHER-ORDER

q-DIFFERENCE OPERATORS

LUC VINET AND ALEXEI ZHEDANOV

(Communicated by Hal L. Smith)

Abstract. We consider the polynomials pn(x; a, b;M) obtained from the little
q-Jacobi polynomials pn(x; a, b) by inserting a discrete mass M at x = 0 in
the orthogonality measure. We show that for a = qj , j = 0, 1, 2, . . . , the
polynomials pn(x; a, b;M) are eigensolutions of a linear q-difference operator
of order 2j+4 with polynomial coefficients. This provides a q-analog of results
recently obtained for the Krall polynomials.

1. q-derivative operators and their representation coefficients

Let T be the q-shift operator that acts on functions according to

T F (x) = F (qx),(1.1)

with 0 < q < 1 a real number. Obviously

T n F (x) = F (qnx), n = 0,±1,±2, . . . .(1.2)

Introduce the q-derivative operator (see, e.g., [2])

DqF (x) = (x(1− q))−1 (1 − T ).(1.3)

It is called the q-derivative because its action on monomials is

Dqxn = [n] xn−1,(1.4)

with

[n] = (qn − 1)/(q − 1)(1.5)

the so-called q-number. Moreover limq→1Dq = D, where D is the ordinary deriva-
tive operator with respect to x: DF (x) = F ′(x).

Received by the editors December 11, 1998.
2000 Mathematics Subject Classification. Primary 33D45.
Key words and phrases. Krall’s polynomials, little q-Jacobi polynomials.
The work of the first author was supported in part through funds provided by NSERC (Canada)

and FCAR (Quebec). The work of the second author was supported in part through funds provided
by SCST (Ukraine) Project #2.4/197, INTAS-96-0700 grant and project 96-01-00281 supported by
RFBR (Russia). The second author thanks Centre de recherches mathématiques of the Université
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Consider operators of the form

Lq =
2N∑
k=0

ak(x) Dkq ,(1.6)

where N is a fixed positive integer and ak(x) are polynomials in x of degrees not
exceeding k:

ak(x) =
k∑
s=0

αksx
s, k = 0, 1, . . . , 2N.(1.7)

Let us introduce also the related operators

Lq = T−N Lq =
2N∑
k=0

ak(q−N x) T−N Dkq .(1.8)

The operator Lq is a linear combination of the operators T 2N , T 2N−1, . . . , T, T 0 = I,
while the operator Lq is a linear combination of the operators TN , TN−1, . . . , T 1−N ,
T−N .

For q → 1 both operators Lq and Lq become 2N -order differential operators
with polynomial coefficients:

lim
q→1

Lq = lim
q→1
Lq =

2N∑
k=0

a
(0)
k (x) Dk,(1.9)

where a(0)
k (x) = limq→1 a(x).

The operator Lq will prove more practical in searching for orthogonal polynomi-
als Pn(x) satisfying eigenvalue equations of the kind

LqPn(x) = λnPn(x).(1.10)

It is known that for N = 1, the little q-Jacobi polynomials satisfy an equation of
the form (1.10) with N = 1 [9]. We wish to determine other systems of orthogonal
polynomials satisfying equation (1.10) with N > 1.

To this end, we shall extend to q-difference operators the method proposed in
[12].

The main idea of the method is the following. Consider the action of the operator
Lq upon the monomials xn. From (1.6) and (1.7) we get

Lqxn =
∑
s=0

A(s)
n xn−s,(1.11)

where

A(s)
n = qN(s−n) [n][n− 1] . . . [n− s+ 1] πs(qn),(1.12)

and

πs(qn) = αs0 +
2N−s∑
i=1

αs+i,i[n− s][n− s− 1] . . . [n− s− i+ 1](1.13)

are polynomials in z = qn of degrees not exceeding 2N−s. It is clear that, moreover,

A(s)
n = 0, s > 2N.(1.14)

The coefficients A(s)
n completely characterize the operator Lq. We will call A(s)

n the
representation coefficients of the operator Lq.



GENERALIZED LITTLE q-JACOBI POLYNOMIALS 1319

Proposition 1.1. Assume that there are coefficients A(s)
n expressible as in (1.12),

where πs(qn) are arbitrary polynomials in qn of degrees not exceeding 2N − s. As-
sume also that A(s)

n = 0, s > 2N (i.e. πs(qn) = 0 for s > 2N). Then there
exists a unique operator Lq of the form (1.8) such that A(s)

n are its representation
coefficients.

Proof. Any polynomial πs(qn) of degree not exceeding 2N − s can be presented
in form (1.13) with some coefficients αik. These coefficients are determined using
Newton’s interpolation formula

αs+i,i =
(q − 1)iqsi+i(i−1)/2

[i]!
Diqπs(x)

∣∣∣∣
x=qs

, i = 0, 1, . . . , 2N − s,(1.15)

where [i]! = [1][2] . . . [i] is the q-factorial. Clearly, the coefficients αik are determined
uniquely by (1.15) from the given polynomials πs(qn). Hence the operator Lq is
defined uniquely.

2. Basic relations for polynomials satisfying eigenvalue equations

In this section we consider the basic relations between the representation coeffi-
cients A(s)

n and the expansion coefficents of polynomials Pn(x) satisfying eigenvalue
equations. Assume that

Pn(x) =
n∑
s=0

B(s)
n xn−s,(2.1)

where B
(s)
n are expansion coefficients. In what follows we will assume that the

polynomials Pn(x) are monic, i.e. that

B(0)
n = 1.(2.2)

Substituting (2.1) into the eigenvalue equation (1.10) we arrive at the following
set of algebraic relations:

s∑
i=0

B(s−i)
n A

(i)
n−s+i = λn B

(s)
n , s = 0, 1, 2, . . . , n.(2.3)

These will be central in our analysis.
For s = 0, (2.3) gives

λn = A(0)
n .(2.4)

Thus from (1.12) we find that the eigenvalues λn have the expression

λn = q−Nn π0(qn),(2.5)

where π0(qn) is a polynomial in qn of degree not exceeding 2N .
Similarly, for s = 1, (2.3) yields

A(1)
n = Ωn B(1)

n ,(2.6)

where Ωn = λn − λn−1. From this relation we find that

B(1)
n = [n]

π1(qn)
q−Nπ0(qn)− π0(qn−1)

.(2.7)
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Relation (2.3) can be rewritten in the form

(λn − λn−s)B(s)
n = B(s−1)

n A
(1)
n−s+1 +B(s−2)

n A
(2)
n−s+2 + · · ·+A(s)

n .(2.8)

From this relation we can conclude, by induction, that the coefficients B(s)
n are

rational functions in qn, namely that

B(s)
n = [n][n− 1] . . . [n− s+ 1]

Q1,s(qn)
Q2,s(qn)

,(2.9)

where Q1,s(qn) is a polynomial of degree not exceeding 2Ns−s, whereas the degree
of the polynomial

Q2,s(qn) =
s∏
i=1

(
q−iNπ0(qn)− π0(qn−i)

)
(2.10)

does not exceed 2Ns.
The problem considered up to this point of finding the expansion coefficients

B
(s)
n of the polynomials Pn(x) when the representation coefficients A(s)

n are given
always has a unique solution.

Proposition 2.1. Assume that the representation coefficients A(s)
n of the operator

Lq satisfy the requirement

A(0)
n 6= A(0)

m , n 6= m.(2.11)

Then there exists a unique set of monic polynomials Pn(x), n = 0, 1, . . . , satisfying
equation (1.10).

Proof. We find λm from (2.4); in view of condition (2.11), a unique B(1)
n is found

from (2.6). Assuming that all B(1)
n , B

(2)
n , . . . , B

(s−1)
n have thus been found recur-

sively, B(s)
n is then determined in an unambigous way owing to (2.11).

The polynomials Pn(x) are not orthogonal in general. The requirement that they
form an orthogonal set implies strong additional restrictions upon the coefficents
B

(s)
n and A

(s)
n . Indeed, orthogonal polynomials satisfy a three-term recurrence

relation of the form [1]

Pn+1(x) + bn Pn(x) + un Pn−1(x) = xPn(x),(2.12)

with bn and un referred to as the recurrence parameters. From (2.12) and (2.1) we
get the set of relations

B
(s+1)
n+1 −B(s+1)

n + un B
(s−1)
n−1 + bn B

(s)
n = 0, s = 0, 1, . . . , n,(2.13)

where it is assumed that B(−1)
n = B

(n+1)
n = 0. Putting s = 0 and s = 1 in (2.13),

we find

bn = B(1)
n −B

(1)
n+1,

un = B(2)
n −B

(2)
n+1 − bn B(1)

n .(2.14)

Taking into account that the coefficients B(s)
n are rational functions in qn we arrive

at the following proposition.

Proposition 2.2. If the orthogonal polynomials Pn(x) are eigenfunctions of the
operator (1.8), their recurrence coefficients bn, un are rational functions of the ar-
gument qn.
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The problem of reconstructing the representation coefficients A(s)
n when the ex-

pansion coefficients B(s)
n are given is more difficult. The coefficients B(s)

n must of
course be rational functions in qn, since otherwise the problem has no solutions.
Assume therefore that

B(s)
n = [n][n− 1] . . . [n− s+ 1]

G1,s(qn)
G2,s(qn)

,(2.15)

where the degree of the polynomial G1,s(qn) does not exceed 2Ms − s (for some
positive integer M ≤ N) whereas the degree polynomial G2,s(qn) does not ex-
ceed 2Ms. We assume that the polynomials G1,s(x) and G2,s(x) have no common
divisors. Note that in this case the polynomial G2,s(qn) need not coincide with
expression (2.10) because in the expression (2.9) polynomials Q1,s(x) and Q2,s(x)
may have coinciding zeroes.

Consider relation (2.6) written in the form

A
(1)
n

Ωn
= [n]

G1,1(qn)
G2,1(qn)

.(2.16)

Since both qnNA(1)
n and qnNΩn should be polynomials in qn of degrees not exceeding

2N , we have

A(1)
n = qN(1−n) ρ1(qn) [n]G1,1(qn),

Ωn = qN(1−n) ρ1(qn)G2,1(qn),(2.17)

where ρ1(qn) is some polynomial of degree not exceeding 2N − 2M .
The relation (2.3), for s = 2, can then be rewritten in the form

A(2)
n = (λn − λn−2)B(2)

n −A
(1)
n−1 B

(1)
n = (Ωn + Ωn−1)B(2)

n −A
(1)
n−1 B

(1)
n .(2.18)

The representation coefficient A(2)
n is thus determined uniquely if A(1)

n and Ωn are
known.

Assume that the coefficients A(2)
n , A

(3)
n , . . . , A

(k−1)
n have been determined iterat-

ing this process. With s = k, (2.3) can now be rewritten in the form

A(k)
n = (λn − λn−k)B(k)

n −B(k−1)
n A

(1)
n−k+1 −B(k−2)

n A
(2)
n−k+2 − · · · −B(1)

n A
(k−1)
n−1 .

(2.19)

Taking into account the fact that

λn − λn−k = Ωn + Ωn−1 + · · ·+ Ωn−k+1,

we see that A(k)
n is completely determined from the coefficients Ωn, A

(1)
n , . . . , A

(k−1)
n .

For the A(s)
n thus obtained to actually be representation coefficients of an operator

Lq, they necessarily need to satisfy, in addition, the conditions of Proposition 1.1.
When this is so, the corresponding polynomials are eigenfunctions of the operator
Lq.

3. Little q-Jacobi polynomials

The monic little q-Jacobi polynomials [9] are defined as

Pn(x; a, b) = (−1)n
qn(n−1)/2 (aq; q)n

(abqn+1; q)n
2φ1

(
q−n, abqn+1

aq

∣∣∣∣qx) ,(3.1)

where (a; q)n = (1 − a)(1 − aq) . . . (1 − aqn−1) is the q-shifted factorial and 2φ1

denotes the q-hypergeometric function (see, e.g., [2]).
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The orthogonality relation is
∞∑
k=0

wkPn(qk; a, b) Pm(qk; a, b) = hnδnm,(3.2)

where hn are appropriate normalization constants, and the normalized weight func-
tion is

wk =
(aq; q)∞

(abq2; q)∞
(bq; q)k (aq)k

(q; q)k
.(3.3)

It is assumed that 0 < aq < 1, b < q−1. The expansion coefficients of the little
q-Jacobi polynomials are

B(s)
n = b−s

(q−n, a−1q−n; q)s
(q, a−1b−1q−2n; q)s

.(3.4)

It is easily verified that equations (2.8) have the following solutions:

A(0)
n = λn = [n](q1−n − abq2),

A(1)
n = [n](aq − q1−n),

A(s)
n = 0, s ≥ 2.(3.5)

Hence, the little q-Jacobi polynomials satisfy a second-order q-difference equation,
as is well known [9].

We also need the value of the function of second kind, Qn(z), at z = 0 (the point
z = 0 is an accumulation point of the orthogonality measure):

Qn(0; a, b) = −
∞∑
k=0

Pn(qk; a, b)wk
qk

.(3.6)

This sum can be evaluated using the q-binomial theorem and the q-Saalschütz
formula (see, e.g., [2]):

Qn(0; a, b) = (−1)n+1anqn(n−1)/2 1− abq
1− a

(q; q)n(bq; q)n
(abq; q)n(abqn+1; q)n

.(3.7)

Taking into account that

Pn(0; a, b) = (−1)nqn(n−1)/2 (aq; q)n
(abqn+1; q)n

,(3.8)

we note that if a = qj , j = 1, 2, 3, . . . , then

(3.9) Φn = Qn(0; qj , b) + βPn(0; qj , b)

= (−1)nqn(n−1)/2 (qj+1; q)n
(bqn+j+1; q)n

(
β − qnj (1− bqj+1) (bq; q)j (q; q)j

(1− qj) (qn+1; q)j (bqn+1; q)j

)
.

4. Transformed q-Jacobi polynomials

Let Pn(x) be arbitrary orthogonal polynomials with measure localized on the
interval [a, b]. The corresponding weight function w(x) is assumed to be normalized
to 1, i.e. ∫ b

a

w(x) dx = 1.
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Introduce the functions of second kind,

Qn(z) =
∫ b

a

Pn(x) w(x)
z − x dx.(4.1)

Let c be a point beyond the orthogonality interval [a, b] such that Qn(c) exists.
Consider the polynomials

P̃n(x) = G(c){Pn(x)} = Pn(x)− Φn
Φn−1

Pn−1(x), n = 1, 2, . . . , P̃0(x) = 1,

(4.2)

where

Φn = Qn(c) + β Pn(c).(4.3)

The notation G(c){Pn(x)} stands for the Geronimus transformation [3], [4] of
the polynomials Pn(x) at the point x = c (for details see, e.g., [11]). The weight
function w̃(x) of the polynomials G(c){Pn(x)} is

w̃(x) = κ

(
w(x)
x− c − β δ(x− c)

)
,(4.4)

where κ is an appropriate normalization constant. The Geronimus transformation
thus inserts a concentrated mass at the point x = c. The value of this mass depends
on the parameter β.

Return to the case of the little q-Jacobi polynomials with a = qj , j = 1, 2, 3, . . . .
Perform the Geronimus transformation (4.2) with Φn given by (3.9). (In this case
c = 0.)

The weight function w̃(x) for the polynomials G(c){Pn(x)} is

w̃(x) = κ

( ∞∑
k=0

w̃kδ(x− qk)− β δ(x)

)
,(4.5)

where

w̃k =
(qj+1; q)∞
(bqj+2; q)∞

(bq; q)k qjk

(q; q)k
.(4.6)

The weight function (4.5) can be rewritten in the form

w̃(x) = κ1 (w(x; j − 1) +M δ(x)) ,(4.7)

where

M = −β 1− qj
1− bqj+1

, κ1 = κ
1− bqj+1

1− qj ,

and w(x; j − 1) is the weight function corresponding to the little q-Jacobi polyno-
mials with the parameter a = qj replaced with a = qj−1, i.e.

w(x; j − 1) =
∞∑
k=0

wk(j − 1)δ(x− qk),(4.8)

and

wk(j − 1) =
(qj ; q)∞

(bqj+1; q)∞
(bq; q)kqjk

(q; q)k
.(4.9)
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Thus the weight function w̃(x; j) for the polynomials G(0){Pn(x)} is obtained from
the weight function w(x; j− 1) through the addition of an arbitrary mass M at the
point x = 0.

In the expansion

G(0){Pn(x; qj , b)} =
n∑
s=0

B(s)
n xn−s,(4.10)

the coefficients B(s)
n are found from (3.1) and (3.9):

(4.11) B(s)
n = b−s

(q−n; q)s (q−n−j ; q)s
(q; q)s (b−1q−j−2n; q)s

×
(

1− qn+j−s (1 − bqn)(1 − qs)
(1− qn+j)(1− bqj+2n−s)

Yj(n)
Yj(n− 1)

)
,

with

Yj(n) = βq−jn(qn+1; q)j(bqn+1; q)j − (q; q)j−1(bq; q)j+1.(4.12)

5. Construction of the coefficients A
(s)
n

In this section we construct the coefficients A(s)
n for the q-difference operator Lq

that has the polynomials P̃n(x) as eigenfunctions.
We start from the relation

A(1)
n = Ωn B(1)

n ,(5.1)

where

Ωn = λn − λn−1 = A(0)
n −A

(0)
n−1.(5.2)

Choose Ωn proportional to the denominator of B(1)
n :

(5.3) Ωn = bqn+j−1(q − 1)(1− b−1q1−j−2n)

×
(
βq−j(n−1)(qn; q)j(bqn; q)j − (bq; q)j+1(q; q)j−1

)
.

Then from (5.1) we get for A(1)
n the expression

(5.4) A(1)
n = (1 − q−n)

(
βqj(1−n)(qn+1; q)j(bqn; q)j (1 − qn−1)

− (q; q)j−1(bq; q)j+1(1− qn+j−1)
)
.

Using (5.2) it is not difficult to show that

(5.5) A(0)
n = λn =

β (q − 1)q−n(j+1)−1(qn; q)j+1(bqn; q)j+1

1− q−j−1

− (q−n − 1)(1− bqn+j)(bq; q)j+1(q; q)j−1.

(Note that A(0)
0 = 0.)

Now using the explicit expressions for B(1,2)
n and A

(0,1)
n , we find

A(2)
n = β(q − 1)q(2−n)(j+1)−1 (1− q−j)(qn−2; q)j+3(bqn; q)j−1

(q; q)2
.(5.6)
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Repeating this procedure for s = 3, 4, . . . one can guess the expression

(5.7) A(s)
n = β(q − 1)q(s−n)(j+1)−1 (q−j ; q)s−1(qn−s; q)s+j+1(bqn; q)j−s+1

(q; q)s
+ ξnδs,1 + ηnδs,0,

where

ξn = (q−n − 1)(q; q)j−1(bq; q)j+1(1− qj+n−1),

ηn = (1− q−n)(1 − bqn+j)(bq; q)j+1(q; q)j−1,

and s = 0, 1, 2, . . . .

Proposition 5.1. The coefficients A(s)
n given by (5.7) satisfy the basic relations

s∑
i=0

B(s−i)
n A

(i)
n−s+i = A(0)

n B(s)
n .(5.8)

Proof. Using the explicit expressions for B(s)
n and An(s) we can rewrite the lhs of

(5.8) in the form
s∑
i=0

B(s−i)
n A

(i)
n−s+i = ηn−sB

(s)
n + ξn−s+1B

(s−1)
n + κn (S1 + νn S2) ,(5.9)

where

κn = β(q − 1)b−s q(j+1)(s−n)−1 (q−n; q)s(q−j−n; q)s(qn−s; q)j+1(bqn−s; q)j+1

(q; q)s(b−1q−j−2n; q)s(1− q−j−1)
,

νn =
qn+j(1− bqn)(1 − q−s)Yj(n)

(1− qn+j)(1 − bqj+2n−s)Yj(n− 1)
,

and S1, S2 are the sums

S1 =
s∑
i=0

qi(q−s; q)i(bqj+2n+1−s; q)i(q−j−1; q)i
(q; q)i(qn+1−s; q)i(bqn−s; q)i

,

S2 =
s∑
i=0

qi(q1−s; q)i(bqj+2n−s; q)i(q−j−1; q)i
(q; q)i(qn+1−s; q)i(bqn−s; q)i

.

These sums can be evaluated using the q-analog of the Saalschütz formula [2]:

S1 = q(j+1)s (b−1q−j−n, q−1−j−n; q)s
(b−1q1−n, q−n; q)s

,

S2 = q(j+1)(s−1) (b−1q1−j−n, q−j−n; q)s−1

(b−1q2−n, q1−n; q)s−1
.

Relation (5.8) now becomes

(ηn−s − λn)B(s)
n + ξn−s+1B

(s−1)
n + κn (S1 + νn S2) = 0(5.10)

and is seen to be identically satisfied. This proves the proposition.

From expression (5.7) it follows that

A(s)
n = 0, if s ≥ j + 2.(5.11)

Moreover, for s<j+2 the coefficientsA(s)
n have the formA

(s)
n =q−(j+1)nQ2j+2(qn; s),

where Q2j+2(qn; s) is a polynomial in qn of degree 2j + 2.
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Hence we have

Proposition 5.2. The polynomials G(0){Pn(x; qj , b)} are the eigenfunctions of a
q-difference operator Lq of order 2N = 2j + 2.

We know that the polynomials G(0){Pn(x; qj , b)} coincide with the polynomials
Pn(x; qj−1, b;M) obtained from the little q-Jacobi polynomials by adding to the
orthogonality measure a mass M at x = 0. We thus have equivalently the following

Proposition 5.3. The polynomials Pn(x; qj , b;M) obtained from the little q-Jacobi
polynomials by inserting a discrete mass at x = 0 in the orthogonality measure are
the eigenfunctions of a q-difference operator of order 2N = 2j + 4.

This proposition is a q-analogue of the corresponding proposition for the ordinary
Jacobi polynomials [7], [11].

Note that the first explicit example of the generalized little q-Jacobi polynomials
satisfying a fourth-order q-differential equation was found in [5].

Remark. As the referee pointed out, when a 6= qj , j = 0, 1, 2, . . . , then the coeffi-
cients A(s)

n (given by the expression (5.7)) do not vanish for all s. In this case one
can expect that the corresponding polynomials are eigenfunctions of a q-difference
operator of infinite order. When q = 1, corresponding differential operators of
infinite order were found e.g. in [6], [7].

6. The case of little q-Laguerre polynomials

The monic little q-Laguerre polynomials [9]

Pn(x; a) = (−1)n qn(n−1)/2 (aq; q)n 2φ1

(
q−n, 0
aq

∣∣∣∣qx)(6.1)

are obtained from the little q-Jacobi polynomials by setting b = 0. Hence, these
polynomials also satisfy a q-difference equation.

Consider the polynomials G(0){Pn(x; qj)} obtained from the little q-Laguerre
polynomials by the Geronimus transformation at x = 0. All formulas for these
polynomials are obtained from those for little q-Jacobi polynomials by putting
b = 0.

In particular, their coefficients A(s)
n are easily obtained from (5.7).

We thus have

Proposition 6.1. The polynomials G(0){Pn(x; qj)} are the eigenfunctions of a q-
difference operator of order 2N = 2j + 2.

In this case, the polynomials G(0){Pn(x; qj)} coincide with polynomials
Pn(x; qj−1;M) obtained from the little q-Laguerre polynomials by adding to the
orthogonality measure a mass M at x = 0. Hence

Proposition 6.2. The polynomials Pn(x; qj ;M) are the eigenfunctions of a q-
difference operator of order 2N = 2j + 4.

When q → 1 we get Koornwinder’s generalized Laguerre polynomials L(j;M)
n (x)

[10] whose measure differs from that of the ordinary Laguerre polynomials L(j)
n (x)

by inserting a concentrated mass M at the endpoint x = 0 of the orthogonality
interval (0,∞). These polynomials are known to satisfy a differential equation of
order 2j + 4 [6], [8].
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