Asymptotic behavior of Fourier transforms of self-similar measures
HTML articles powered by AMS MathViewer
- by Tian-You Hu
- Proc. Amer. Math. Soc. 129 (2001), 1713-1720
- DOI: https://doi.org/10.1090/S0002-9939-00-05709-9
- Published electronically: November 3, 2000
- PDF | Request permission
Abstract:
Let $\mu$ be a self-similar probability measure on $\mathbb {R}$ satisfying $\mu =\sum _{j=1}^mp_j\mu \circ F_j^{-1},$ where $F_j(x)=\rho x+a_j,$ $0<$ $\rho <1,$ $a_j\in \mathbb {R},$ $p_j>0$ and $\sum _{j=1}^mp_j=1.$ Let $\hat {\mu } (t)$ be the Fourier transform of $\mu .$ A necessary and sufficient condition for $\hat {\mu }(t)$ to approach zero at infinity is given. In particular, if $a_j=j$ and $p_j=1/m$ for $j=1,...,m,$ then $\lim \sup _{t\rightarrow \infty }|\hat {\mu }(t)|>0$ if and only if $\rho ^{-1}$ is a PV-number and $\rho ^{-1}$ is not a factor of $m$. This generalizes the corresponding theorem of Erdös and Salem for the case $m=2.$References
- M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J.-P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992. With a preface by David W. Boyd. MR 1187044, DOI 10.1007/978-3-0348-8632-1
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Ai Hua Fan and Ka-Sing Lau, Asymptotic behavior of multiperiodic functions $G(x)=\prod ^\infty _{n=1}g(x/2^n)$, J. Fourier Anal. Appl. 4 (1998), no. 2, 129–150. MR 1650925, DOI 10.1007/BF02475985
- Adriano M. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962), 409–432. MR 137961, DOI 10.1090/S0002-9947-1962-0137961-5
- B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1935), 48-88.
- Ka-Sing Lau, Fractal measures and mean $p$-variations, J. Funct. Anal. 108 (1992), no. 2, 427–457. MR 1176682, DOI 10.1016/0022-1236(92)90031-D
- Ka-Sing Lau, Dimension of a family of singular Bernoulli convolutions, J. Funct. Anal. 116 (1993), no. 2, 335–358. MR 1239075, DOI 10.1006/jfan.1993.1116
- Ka-Sing Lau and Jianrong Wang, Mean quadratic variations and Fourier asymptotics of self-similar measures, Monatsh. Math. 115 (1993), no. 1-2, 99–132. MR 1223247, DOI 10.1007/BF01311213
- Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422–425. MR 5, DOI 10.2307/2303036
- Raphaël Salem, Algebraic numbers and Fourier analysis, D. C. Heath and Company, Boston, Mass., 1963. MR 0157941
- Boris Solomyak, On the random series $\sum \pm \lambda ^n$ (an Erdős problem), Ann. of Math. (2) 142 (1995), no. 3, 611–625. MR 1356783, DOI 10.2307/2118556
- Robert S. Strichartz, Fourier asymptotics of fractal measures, J. Funct. Anal. 89 (1990), no. 1, 154–187. MR 1040961, DOI 10.1016/0022-1236(90)90009-A
- Robert S. Strichartz, Self-similar measures and their Fourier transforms. I, Indiana Univ. Math. J. 39 (1990), no. 3, 797–817. MR 1078738, DOI 10.1512/iumj.1990.39.39038
- Robert S. Strichartz, Self-similar measures and their Fourier transforms. II, Trans. Amer. Math. Soc. 336 (1993), no. 1, 335–361. MR 1081941, DOI 10.1090/S0002-9947-1993-1081941-2
Bibliographic Information
- Tian-You Hu
- Affiliation: Department of Mathematics, University of Wisconsin-Green Bay, Green Bay, Wisconsin 54311
- Email: hut@uwgb.edu
- Received by editor(s): August 6, 1999
- Received by editor(s) in revised form: September 16, 1999
- Published electronically: November 3, 2000
- Communicated by: Christopher D. Sogge
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 1713-1720
- MSC (2000): Primary 42A38; Secondary 28A80
- DOI: https://doi.org/10.1090/S0002-9939-00-05709-9
- MathSciNet review: 1814101