Residually finite dimensional and AF-embeddable $C^*$-algebras
HTML articles powered by AMS MathViewer
- by Huaxin Lin
- Proc. Amer. Math. Soc. 129 (2001), 1689-1696
- DOI: https://doi.org/10.1090/S0002-9939-00-05744-0
- Published electronically: November 2, 2000
- PDF | Request permission
Abstract:
We show that every separable nuclear residually finite dimensional $C^*$-algebras satisfying the Universal Coefficient Theorem can be embedded into a unital separable simple AF-algebra.References
- Bruce Blackadar and Eberhard Kirchberg, Generalized inductive limits of finite-dimensional $C^*$-algebras, Math. Ann. 307 (1997), no. 3, 343–380. MR 1437044, DOI 10.1007/s002080050039
- B. Blackadar and E. Kirchberg, Inner quasidiagonality and strong NF algebras, preprint.
- N. P. Brown, AF embeddability of cross product of AF algebras by the integers, J. Funct. Anal. 160 (1998), 150–175.
- Marius Dadarlat, Residually finite-dimensional $C^\ast$-algebras, Operator algebras and operator theory (Shanghai, 1997) Contemp. Math., vol. 228, Amer. Math. Soc., Providence, RI, 1998, pp. 45–50. MR 1667653, DOI 10.1090/conm/228/03280
- M. Dadarlat and S. Eilers, On the classification of nuclear $C^*$-algebras, preprint 1998.
- Marius Dadarlat and Terry A. Loring, A universal multicoefficient theorem for the Kasparov groups, Duke Math. J. 84 (1996), no. 2, 355–377. MR 1404333, DOI 10.1215/S0012-7094-96-08412-4
- George A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1976), no. 1, 29–44. MR 397420, DOI 10.1016/0021-8693(76)90242-8
- George A. Elliott, On the classification of $C^*$-algebras of real rank zero, J. Reine Angew. Math. 443 (1993), 179–219. MR 1241132, DOI 10.1515/crll.1993.443.179
- K. R. Goodearl and D. Handelman, Rank functions and $K_{O}$ of regular rings, J. Pure Appl. Algebra 7 (1976), no. 2, 195–216. MR 389965, DOI 10.1016/0022-4049(76)90032-3
- Eberhard Kirchberg, On nonsemisplit extensions, tensor products and exactness of group $C^*$-algebras, Invent. Math. 112 (1993), no. 3, 449–489. MR 1218321, DOI 10.1007/BF01232444
- H. Lin Classification of simple $C^*$-algebras with unique traces, Amer. J. Math. 120 (1998), 1289–1315.
- H. Lin, Tracially AF $C^*$-algebras, Trans. Amer. Math. Soc., to appear.
- H. Lin, Classification of simple TAF $C^*$-algebras, Can. J. Math., to appear.
- Mihai V. Pimsner, Embedding some transformation group $C^{\ast }$-algebras into AF-algebras, Ergodic Theory Dynam. Systems 3 (1983), no. 4, 613–626. MR 753927, DOI 10.1017/S0143385700002182
- Jonathan Rosenberg and Claude Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized $K$-functor, Duke Math. J. 55 (1987), no. 2, 431–474. MR 894590, DOI 10.1215/S0012-7094-87-05524-4
- John S. Spielberg, Embedding $C^*$-algebra extensions into $AF$ algebras, J. Funct. Anal. 81 (1988), no. 2, 325–344. MR 971884, DOI 10.1016/0022-1236(88)90104-8
- Dan Voiculescu, Almost inductive limit automorphisms and embeddings into AF-algebras, Ergodic Theory Dynam. Systems 6 (1986), no. 3, 475–484. MR 863206, DOI 10.1017/S0143385700003618
Bibliographic Information
- Huaxin Lin
- Affiliation: Department of Mathematics, East China Normal University, Shanghai, China
- Address at time of publication: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222
- Email: hxlin@noether.uoregon.edu
- Received by editor(s): July 22, 1998
- Received by editor(s) in revised form: September 13, 1999
- Published electronically: November 2, 2000
- Additional Notes: Research partially supported by NSF grants DMS 9801482
- Communicated by: David R. Larson
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 1689-1696
- MSC (2000): Primary 46L05, 46L35
- DOI: https://doi.org/10.1090/S0002-9939-00-05744-0
- MathSciNet review: 1814098