Double exponential sums over thin sets
HTML articles powered by AMS MathViewer
- by John B. Friedlander and Igor E. Shparlinski
- Proc. Amer. Math. Soc. 129 (2001), 1617-1621
- DOI: https://doi.org/10.1090/S0002-9939-00-05921-9
- Published electronically: October 31, 2000
- PDF | Request permission
Abstract:
We estimate double exponential sums of the form \begin{equation*} S_a( {\mathcal X}, {\mathcal Y}) = \sum _{x \in {\mathcal X}} \sum _{y \in {\mathcal Y}} \exp \left ( 2\pi i a \vartheta ^{xy}/p\right ), \end{equation*} where $\vartheta$ is of multiplicative order $t$ modulo the prime $p$ and ${\mathcal X}$ and ${\mathcal Y}$ are arbitrary subsets of the residue ring modulo $t$. In the special case $t = p-1$, our bound is nontrivial for $| {\mathcal X}| \ge | {\mathcal Y}| \ge p^{15/16+ \delta }$ with any fixed $\delta >0$, while if in addition we have $| {\mathcal X}| \ge p^{1- \delta /4}$ it is nontrivial for $| {\mathcal Y}| \ge p^{3/4+ \delta }$.References
- R. Canetti, J. B. Friedlander, S. Konyagin, M. Larsen, D. Lieman and I. E. Shparlinski, ‘On the statistical properties of Diffie–Hellman distributions’, Israel J. Math. (to appear).
- Ran Canetti, John Friedlander, and Igor Shparlinski, On certain exponential sums and the distribution of Diffie-Hellman triples, J. London Math. Soc. (2) 59 (1999), no. 3, 799–812. MR 1709081, DOI 10.1112/S002461079900736X
- Fan R. K. Chung, Several generalizations of Weil sums, J. Number Theory 49 (1994), no. 1, 95–106. MR 1295956, DOI 10.1006/jnth.1994.1084
- Edward Dobrowolski and Kenneth S. Williams, An upper bound for the sum $\sum ^{a+H}_{n=a+1}f(n)$ for a certain class of functions $f$, Proc. Amer. Math. Soc. 114 (1992), no. 1, 29–35. MR 1068118, DOI 10.1090/S0002-9939-1992-1068118-6
- J. Friedlander and H. Iwaniec, Estimates for character sums, Proc. Amer. Math. Soc. 119 (1993), no. 2, 365–372. MR 1152276, DOI 10.1090/S0002-9939-1993-1152276-X
- Henryk Iwaniec and András Sárközy, On a multiplicative hybrid problem, J. Number Theory 26 (1987), no. 1, 89–95. MR 883536, DOI 10.1016/0022-314X(87)90098-9
- S. Konyagin and I. E. Shparlinski, Character sums with exponential functions and their applications, Cambridge Univ. Press, Cambridge, 1999.
- N. M. Korobov, The distribution of digits in periodic fractions, Mat. Sb. (N.S.) 89(131) (1972), 654–670, 672 (Russian). MR 0424660
- N. M. Korobov, Exponential sums and their applications, Mathematics and its Applications (Soviet Series), vol. 80, Kluwer Academic Publishers Group, Dordrecht, 1992. Translated from the 1989 Russian original by Yu. N. Shakhov. MR 1162539, DOI 10.1007/978-94-015-8032-8
- Harald Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), no. 6, 957–1041. MR 508447, DOI 10.1090/S0002-9904-1978-14532-7
- A. Sárközy, On the distribution of residues of products of integers, Acta Math. Hungar. 49 (1987), no. 3-4, 397–401. MR 891052, DOI 10.1007/BF01951003
- I. E. Shparlinski, ‘On the distribution of primitive and irreducible polynomials modulo a prime’, Diskretnaja Matem., 1 (1989), no.1, 117–124 (in Russian).
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
Bibliographic Information
- John B. Friedlander
- Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
- Email: frdlndr@math.toronto.edu
- Igor E. Shparlinski
- Affiliation: Department of Computing, Macquarie University, Sydney, New South Wales 2109, Australia
- MR Author ID: 192194
- Email: igor@ics.mq.edu.au
- Received by editor(s): September 16, 1999
- Published electronically: October 31, 2000
- Additional Notes: The first author was supported in part by NSERC grant A5123 and by an NEC grant to the Institute for Advanced Study.
The second author was supported in part by ARC grant A69700294. - Communicated by: Dennis A. Hejhal
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 1617-1621
- MSC (2000): Primary 11L07, 11T23; Secondary 11L26
- DOI: https://doi.org/10.1090/S0002-9939-00-05921-9
- MathSciNet review: 1814088