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INVARIANT SUBSPACES OF ARBITRARY MULTIPLICITY
FOR THE SHIFT ON `1

AHARON ATZMON

(Communicated by David R. Larson)

Abstract. It is shown that if n is a positive integer or n = ∞, then the
unilateral shift on `1 has an invariant subspace such that its restriction to it
has multiplicity n.

1

Let T be a bounded linear operator on a Banach space X . Recall that a subset
C of X is called cyclic for T if the linear span of the set {T nx : x ∈ C, n = 0, 1, · · · }
is dense in X . The minimal cardinality of a cyclic set for T is called the multiplicity
of T , and will be denoted by m(T ). It is readily verified that m(T ) is not less than
the dimension of the quotient space X/TX.

For 1 ≤ p < ∞, `p denotes the Banach space of all complex sequences a on the
set Z+ (of nonnegative integers) such that the norm ‖a‖p = (

∑∞
n=0 |a(n)|p)1/p is

finite. The unilateral (right) shift on this space, that is, the operator

a→
(
0, a(0), a(1), · · ·

)
, a ∈ `p ,

will be denoted by Sp.
Assume that V is a (closed) subspace of `p which is invariant under Sp. We shall

also call the multiplicity of the operator Sp|V the multiplicity of V and denote it
by m(V ). If m(V ) = 1, we shall say that V is singly generated. The dimension of
the quotient space V/SpV is called the index of V , and will be denoted by indV .
By the preceding observation, m(V ) ≥ indV .

By a well-known result of Beurling [5, Theorem IV], every invariant subspace of
S2 is singly generated. On the other hand, Abakumov and Borichev [1] recently
proved that, if 2 < p < ∞ and if n is a positive integer or n = ∞, then there
exists an invariant subspace V of Sp such that indV = n. Thus, in particular,
m(V ) ≥ n. They also proved a similar result for the shift on some other Banach
spaces of sequences on Z+, in particular for the shift on the Banach space c0 of
all sequences of complex numbers on Z+ converging to zero, with the supremum
norm. Other results of this type can be found in [6] and the references listed there.

For 1 < p < 2, the problems of whether the operator Sp has an invariant subspace
of index greater than one, and whether it has an invariant subspace which is not
singly generated, are still open.
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Every invariant subspace of S1 has index one. This follows from a general result
of Richter [13, Corollary 3.8], and can also easily be seen directly. For the sake of
completeness, we give a proof in section 3. The purpose of this note is to establish
the following.

Theorem 1. If n is a positive integer, or n = ∞, then the operator S1 has an
invariant subspace of multiplicity n.

It seems that this result provides the first example of a shift invariant Banach
space of sequences on Z+, on which the shift is bounded, has closed range, and each
of its invariant subspaces has index one, but has invariant subspaces which are not
singly generated.

2

To prove the theorem it is convenient to reformulate it first in an equivalent
form. This requires some notation and definitions.

We shall denote by T the “circle” group R/2πZ represented by the interval
[0, 2π] with addition modulo 2π. The Wiener algebra on T of absolutely convergent
Fourier series will be denoted by A(T). That is, A(T) is the Banach algebra (with
respect to pointwise multiplication) of all complex continuous functions f on T
such that the norm

‖f‖A(T) =
∞∑

n=−∞
|f̂(n)|

is finite (as usual {f̂(n)} are the Fourier coefficients of f).
The closed subalgebra of all functions f in A(T) such that f̂(n) = 0 for n < 0

will be denoted by A+(T). It can be identified in the obvious way with the Banach
algebra of holomorphic functions in the open unit disc whose Taylor series are
absolutely convergent in its closure.

For a closed subset E of T, we shall denote by A(E) and A+(E) the algebras of
all functions on E which are restrictions to this set of functions in A(T) and A+(T),
respectively. These are Banach algebras with respect to the quotient norms

‖f‖A(E) = inf
{
‖g‖A(T) : g ∈ A(T), g|E = f

}
and

‖f‖A+(E) = inf
{
‖g‖A+(T) : g ∈ A+(T), g|E = f} .

If B is a commutative Banach algebra with unit, and x1, x2, . . . , xn are elements
in B, we shall denote by [x1, x2, . . . , xn] the closure of the ideal generated by them
algebraically. If I is a closed ideal in B which for some n = 1, 2, . . . , contains
elements x1, x2, . . . , xn such that I = [x1, x2, . . . , xn], we shall say that I is finitely
generated, and if there are no n− 1 elements with that property, we shall say that
I has exactly n generators.

The mapping L : f → {f̂(n)}n∈Z+ is an isometric isomorphism of the Banach
space A+(T) onto the Banach space `1, which carries the operator S of multi-
plication by the function eiθ on A+(T) into the operator S1. In formal terms,
S1 = LSL−1; hence the operators S1 and S are similar. Thus, observing that the
invariant subspaces of the operator S are precisely the closed ideals in the Banach
algebra A+(T), we see that Theorem 1 is equivalent to:
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Theorem 2. For every positive integer n, A+(T) has a closed ideal with exactly n
generators, and also a closed ideal which is not finitely generated.

Proof. We shall show that there exists a closed subset E of T such that the Banach
algebra A+(E) has, for every positive integer n, a closed ideal with exactly n
generators, and also has a closed ideal which is not finitely generated. This will
imply the assertion of the theorem, since if f1, f2, . . . , fn are functions in A+(T)
such that the closed ideal [f1|E , f2|E , . . . , fn|E ] in A+(E) has exactly n generators,
then the same is true for the closed ideal [f1, f2, . . . , fn] in A+(T), and if J is a
closed ideal in A+(E) which is not finitely generated, then I = {f ∈ A+(T) : f |E ∈
J} is a closed ideal in A+(T) with the same property.

We establish now the existence of such a set E. Let D be the cartesian product
of countably many copies of the set {0, 1}, that is, D = {0, 1}N . This is a compact
Hausdorff space with respect to the product topology (when {0, 1} is given the
discrete topology). Let C(D) denote the Banach algebra of complex continuous
functions on D, with the maximum norm ‖ ‖∞, and consider the Varopoulos algebra
V (D), which consist of all complex continuous functions f on D× D, which admit
a representation of the form

f(x, y) =
∞∑
n=1

un(x)vn(y), (x, y) ∈ D× D,(∗)

where un, vn ∈ C(D), n = 1, 2, . . . , and
∞∑
n=1

‖un‖∞‖vn‖∞ <∞ .(∗∗)

With the norm of f defined as the infimum over all the sums of the form (∗∗), for all
possible representations of f in the form (∗), V (D) is a Banach algebra with respect
to pointwise addition and multiplication. (For further details on this algebra we
refer to [7, Ch. 11], [10, Ch. 8], and [14].)

It is proved in [2, Theorem 2.2] that V (D) has a closed ideal which is not finitely
generated, and the proof there also shows that, for every positive integer n, it also
has a closed ideal with exactly n generators. (An explicit proof of this fact can be
found in [7, Lemma 11.2.11].) Hence the theorem will be proved if we show that
there exists a closed subset E of T such that the Banach algebras A+(E) and V (D)
are isomorphic (algebraically and topologically). To see this, consider the dilated
Cantor set on T,

C =
{

2π
∞∑
n=1

εn3−n, εn = 0, 2
}
.

This is a closed subset of T and is the algebraic sum of the perfect sets

C1 =
{

2π
∞∑
n=1

εn9−n, εn = 0, 2
}

and C2 = 3C1. Thus by a theorem of Varopoulos [14, Theorem 4.3.3] (see also [10],
p. 110), there exists a closed subset E of C such that the Banach algebras A(E)
and V (D) are isometrically isomorphic. On the other hand, by a result of Kahane
and Katznelson [12, Theorem 3] and the example in [11, p. 58], A+(C) = A(C),
with equivalent norms, and therefore also A+(E) = A(E), again with equivalent



1966 AHARON ATZMON

norms. This shows that the Banach algebras A+(E) and V (D) are isomorphic, and
the theorem is proved.

3

We now show that every invariant subspace of S1 has index one. This is equiva-
lent to the assertion that if I is a closed nonzero ideal in A+(T), then the quotient
space I/SI has dimension one. Assume first that I contains a function u such that
û(0) = 1. We claim that I = span(SI, u), which clearly proves the assertion for this
case. To show this, consider a function f in I. Since û(0) = 1, there exist functions
g and v in A+(T) such that f − f̂(0)u = Sg and 1 − u = Sv. Since g = ug + vSg
and I is an ideal which contains the functions u and Sg, it follows that g ∈ I,
and therefore f ∈ span(SI, u). In the general case, if I is a nonzero closed ideal
in A+(T), there exists a nonnegative integer n such that I = SnJ , where J is a
closed ideal in A+(T) that contains a function u such that û(0) = 1, and therefore
by the previous part J/SJ has dimension one. Since S is an isometry, the spaces
I/SI and J/SJ have the same dimension, and the assertion is proved.

4

We conclude with some comments on bilateral shifts. For 1 ≤ p < ∞, let Up
denote the bilateral shift on `p(Z), that is, the operator defined by

Upa =
{
a(n− 1)

}
n∈Z

, a ∈ `p(Z) .

As before, if M is an invariant subspace of Up, we shall call the multiplicity of Up|M
also the multiplicity of M , and if M has multiplicity one, we shall say that it is
singly generated.

Combining a result of Wiener [8, Theorem 2] with a result of Helson and Low-
denslager [9] (or [8, Theorem 3]), it follows that every invariant subspace of U2 is
singly generated.

On the other hand since Up|`p(Z+) can be identified with Sp, it follows from the
results of Abakumov and Borichev [1] mentioned before, that if 2 < p <∞, then Up
has invariant subspaces of arbitrarily large multiplicity. By Theorem 1, or directly
by [2, Theorem 2.1], the same is true for S1. (See also [7, Theorem 11.2.3].)

If 1 < p < 2, it is shown in [3] and [4] (in a more general setting) that there
exists a subspace of `p(Z) which is invariant under Up and U−1

p that contains no
element x such that the linear span of the set {Unp x, n ∈ Z} is dense in it. Thus, in
particular, this subspace is not singly generated. We do not know whether, for these
values of p, the operators Up also have invariant subspaces of infinite multiplicity,
or of arbitrarily large finite multiplicity.
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