PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 7, Pages 2119–2125 S 0002-9939(00)05764-6 Article electronically published on November 21, 2000

VARIATIONAL REPRESENTATIONS OF VARADHAN FUNCTIONALS

HAROLD BELL AND WLODZIMIERZ BRYC

(Communicated by Claudia Neuhauser)

ABSTRACT. Motivated by the theory of large deviations, we introduce a class of non-negative non-linear functionals that have a variational "rate function" representation.

1. Introduction

Let (\mathbf{X}, d) be a Polish space with metric d() and let $\mathbf{C}_b(\mathbf{X})$ denote the space of all bounded continuous functions $F: \mathbf{X} \to \mathbb{R}$. In his work on large deviations of probability measures μ_n , Varadhan [12] introduced a class of non-linear functionals \mathbb{L} defined by

(1)
$$\mathbb{L}(F) = \lim_{n \to \infty} \frac{1}{n} \log \int_{\mathbf{X}} \exp(nF(\mathbf{x})) d\mu_n$$

and used the large deviations principle of μ_n to prove the variational representation

(2)
$$\mathbb{L}(F) = L_0 + \sup_{\mathbf{x} \in \mathbf{X}} \{ F(\mathbf{x}) - \mathbb{I}(\mathbf{x}) \},$$

where $\mathbb{I}: \mathbf{X} \to [0, \infty]$ is the *rate function* governing the large deviations, and $L_0 := \mathbb{L}(0) = 0$.

Several authors [1, 3, 4, 9, 10, 11] abstracted non-probabilistic components from the theory of large deviations. In particular, in [3] (see also [10, Theorem 3.1]) we give conditions which imply the rate function representation (2) when the limit (1) exists, and we show that the rate function is determined from the dual formula

(3)
$$\mathbb{I}(\mathbf{x}) = \mathbb{L}(0) + \sup_{F \in \mathbf{C}_b(\mathbf{X})} \{ F(\mathbf{x}) - \mathbb{L}(F) \}.$$

In fact, one can reverse Varadhan's approach, and show that large deviations of probability measures μ_n follow from the variational representation (2) for (1) (see [8, Theorem 1.2.3]). In this context we have $\mu_n(\mathbf{X}) = 1$ which implies $\mathbb{L}(0) = 0$ in (3) and correspondingly $L_0 = 0$ in (2).

"Asymptotic values" in [3] are essentially what we call Varadhan Functionals here; the theorems in that paper are not entirely satisfying because the assumptions are in terms of the underlying probability measures. In this paper we present a more

Received by the editors June 11, 1999 and, in revised form, November 10, 1999. 2000 Mathematics Subject Classification. Primary 60F10.

Key words and phrases. Large deviation, Čech-Stone compactification, Varadhan functionals, rate functions.

satisfying approach which relies on the theory of probability for motivation purposes only.

Definition 1.1. A function $\mathbb{L} : \mathbf{C}_b(\mathbf{X}) \to \mathbb{R}$ is a Varadhan Functional if the following conditions are satisfied:

(4) If
$$F \leq G$$
, then $\mathbb{L}(F) \leq \mathbb{L}(G)$ for all $F, G \in \mathbf{C}_b(\mathbf{X})$,

(5)
$$\mathbb{L}(F + const) = \mathbb{L}(F) + const \text{ for all } F \in \mathbf{C}_b(\mathbf{X}), const \in \mathbb{R}.$$

Expression (1) provides an example of Varadhan Functional, if the limit exists. Another example is given by variational representation (2).

Condition (4) is equivalent to $\mathbb{L}(F \vee G) \geq \mathbb{L}(F) \vee \mathbb{L}(G)$, where $a \vee b$ denotes the maximum of two numbers. Varadhan Functionals like (1) satisfy a stronger condition.

Definition 1.2. A Varadhan Functional \mathbb{L} is maximal if $\mathbb{L}(\cdot)$ is a lattice homomorphism

(6)
$$\mathbb{L}(F \vee G) = \mathbb{L}(F) \vee \mathbb{L}(G).$$

It is easy to see that each Varadhan Functional $\mathbb{L}(\cdot)$ satisfies the Lipschitz condition $|\mathbb{L}(F) - \mathbb{L}(G)| \leq ||F - G||_{\infty}$; compare (9). Thus \mathbb{L} is a continuous mapping from the Banach space $\mathbf{C}_b(\mathbf{X})$ of all bounded continuous functions into the real line. We will need the following stronger continuity assumption, motivated by the definition of the countable additivity of measures.

Definition 1.3. A Varadhan Functional is σ -continuous if the following condition is satisfied:

(7) If
$$F_n \searrow 0$$
, then $\mathbb{L}(F_n) \to \mathbb{L}(0)$.

Notice that if **X** is compact, then by Dini's theorem and the Lipschitz property, all Varadhan Functionals are σ -continuous.

Maximal Varadhan Functionals are convex; this follows from the proof of Theorem 2.1, which shows that formula (2) holds true for all Varadhan Functionals when the supremum is extended to all \mathbf{x} in the Čech-Stone compactification of \mathbf{X} .

A simple example of convex and maximal but not σ -continuous Varadhan Functional is $\mathbb{L}(F) = \limsup_{x \to \infty} F(x)$, where $F \in \mathbf{C}_b(\mathbb{R})$. This Varadhan Functional cannot be represented by variational formula (2). Indeed, (2) implies that $\mathbb{I}(\mathbf{x}) \geq F(\mathbf{x}) - \mathbb{L}(F) = F(\mathbf{x})$ for all $F \in \mathbf{C}_b(\mathbb{R})$ that vanish at ∞ ; hence $\mathbb{I}(\mathbf{x}) = \infty$ for all $\mathbf{x} \in \mathbb{R}$ and (2) gives $\mathbb{L}(F) = -\infty$ for all $F \in \mathbf{C}_b(\mathbb{R})$, a contradiction.

An example of a convex and σ -continuous but not maximal Varadhan Functional is $\mathbb{L}(F) = \log \int_{\mathbf{X}} \exp F(\mathbf{x}) \nu(d\mathbf{x})$, where ν is a finite non-negative measure.

2. Variational representations

The main result of this paper is the following.

Theorem 2.1. If a maximal Varadhan Functional $\mathbb{L}: \mathbf{C}_b(\mathbf{X}) \to \mathbb{R}$ is σ -continuous, then there is $L_0 \in \mathbb{R}$ such that variational representation (2) holds true and the rate function $\mathbb{I}: \mathbf{X} \to [0, \infty]$ is given by the dual formula (3). Furthermore, $\mathbb{I}(\cdot)$ is a tight rate function: sets $\mathbb{I}^{-1}([0, a]) \subset \mathbf{X}$ are compact for all a > 0.

The next result is closely related to Bryc [3, Theorem T.1.1] and Deuschel & Stroock [6, Theorem 5.1.6]. Denote by $\mathcal{P}(\mathbf{X})$ the metric space (with Prokhorov

metric) of all probability measures on a Polish space X with the Borel σ -field generated by all open sets.

Theorem 2.2. If a convex Varadhan Functional $\mathbb{L}: \mathbf{C}_b(\mathbf{X}) \to \mathbb{R}$ is σ -continuous, then there is a lower semicontinuous function $\mathbb{J}: \mathcal{P}(\mathbf{X}) \to [0, \infty]$ and a constant L_0 such that

(8)
$$\mathbb{L}(F) = L_0 + \sup_{\mu \in \mathcal{P}} \{ \int F d\mu - \mathbb{J}(\mu) \}$$

for all bounded continuous functions F.

A well-known example in large deviations is the convex σ -continuous functional $\mathbb{L}(F) := \log \int \exp F(\mathbf{x}) \nu(d\mathbf{x})$ with the rate function in (8) given by the relative entropy functional

$$\mathbb{J}(\mu) = \begin{cases} \int \log \frac{d\mu}{d\nu} d\mu & \text{if } \mu \ll \nu \text{ is absolutely continuous,} \\ \infty & \text{otherwise.} \end{cases}$$

Remark 2.1. Deuschel & Stroock [6, Section 5.1] consider convex functionals Φ : $\mathbf{C}_b(\mathbf{X}) \to \mathbb{R}$ such that $\Phi(const) = const.$ Such functionals satisfy condition (5). Indeed, write F + const as a convex combination

$$F + const = (1 - \theta)F + \frac{\theta}{2} \left(\frac{2const}{\theta}\right) + \frac{\theta}{2}(2F),$$

where $0 < \theta < 1$. Using convexity and $\Phi(const) = const$ we get $\Phi(F + const) \leq$ $\Phi(F) + const + \theta(\frac{\Phi(2F)}{2} - \Phi(F))$. Since $\theta > 0$ is arbitrary this proves that $\Phi(F + const) \leq \Phi(F) + const$. By routine symmetry considerations (replacing $F \mapsto F - const$, and then $const \mapsto -const$, (5) follows.

3. Proofs

Let $L_0 := \mathbb{L}(0)$. Passing to $\mathbb{L}'(F) := \mathbb{L}(F) - L_0$ if necessary, without losing generality, we assume $\mathbb{L}(0) = 0$.

Lemma 3.1. Let $\hat{\mathbf{X}}$ be a compact Hausdorff space. Suppose $\mathbf{X} \subset \hat{\mathbf{X}}$ is a separable metric space in the relative topology. If $\mathbf{x}_0 \in \hat{\mathbf{X}} \setminus \mathbf{X}$, then there are bounded continuous functions $F_n: \hat{\mathbf{X}} \to \mathbb{R}$ such that

- (i) $F_n(\mathbf{x}) \setminus 0$ for all $\mathbf{x} \in \mathbf{X}$,
- (ii) $F_n(\mathbf{x}_0) = 1$ for all $n \in \mathbb{N}$.

Proof. Since $\hat{\mathbf{X}}$ is Hausdorff, for every $\mathbf{x} \in \mathbf{X}$ there is an open set $U_{\mathbf{x}} \ni \mathbf{x}$ such that its closure $\bar{U}_{\mathbf{x}}$ does not contain \mathbf{x}_0 .

By Lindelöf property for separable metric space \mathbf{X} , there is a countable subcover $\{U_n\}$ of $\{U_{\mathbf{x}}\}.$

A compact Hausdorff space $\hat{\mathbf{X}}$ is normal. So there are continuous functions $\phi_n: \hat{\mathbf{X}} \to \mathbb{R}$ such that $\phi_n \mid_{\bar{U}_n} = 0$ and $\phi_n(\mathbf{x}_0) = 1$. To end the proof take $F_n(\mathbf{x}) = \min_{1 \le k \le n} \phi_k(\mathbf{x})$.

To end the proof take
$$F_{r}(\mathbf{x}) = \min_{1 < l < r} \phi_{l}(\mathbf{x})$$

The following lemma is contained implicitly in [3, Theorem T.1.2].

Lemma 3.2. Theorem 2.1 holds true for compact X.

Proof. Let $\mathbb{I}(\cdot)$ be defined by (3). Thus $\mathbb{I}(\mathbf{x}) \geq F(\mathbf{x}) - \mathbb{L}(F)$ which implies $\mathbb{L}(F) \geq \sup_{\mathbf{x} \in \mathbf{X}} \{F(\mathbf{x}) - \mathbb{I}(\mathbf{x})\}$. To end the proof we need therefore to establish the converse inequality. Fix a bounded continuous function $F \in \mathbf{C}_b(\mathbf{X})$ and $\epsilon > 0$. Let $s = \sup_{\mathbf{x} \in \mathbf{X}} \{F(\mathbf{x}) - \mathbb{I}(\mathbf{x})\}$. Clearly $F(\mathbf{x}) - \mathbb{I}(\mathbf{x}) \leq s \leq \mathbb{L}(F)$. By (3) again, for every $\mathbf{x} \in \mathbf{X}$, there is $F_{\mathbf{x}} \in \mathbf{C}_b(\mathbf{X})$ such that $\mathbb{I}(\mathbf{x}) < F_{\mathbf{x}}(\mathbf{x}) - \mathbb{L}(F_{\mathbf{x}}) + \epsilon$. Therefore

$$F(\mathbf{x}) \le s + \mathbb{I}(\mathbf{x}) < s + \epsilon + F_{\mathbf{x}}(\mathbf{x}) - \mathbb{L}(F_{\mathbf{x}}).$$

This means that the sets $U_{\mathbf{x}} = \{ \mathbf{y} \in \mathbf{X} : F(\mathbf{y}) - F_{\mathbf{x}}(\mathbf{y}) < s + \epsilon - \mathbb{L}(F_{\mathbf{x}}) \}$ form an open covering of \mathbf{X} . Using compactness of \mathbf{X} , we choose a finite covering $U_{\mathbf{x}(1)}, \dots, U_{\mathbf{x}(k)}$. Then, writing $F_i = F_{\mathbf{x}(i)}$ we have

$$F(\mathbf{x}) < \max_{1 \le i \le k} \{F_i(\mathbf{x}) - \mathbb{L}(F_i)\} + s + \epsilon$$

for all $\mathbf{x} \in \mathbf{X}$.

Using (4), (5), and (6) we have

$$\mathbb{L}(F) \leq \mathbb{L}\left(\max_{1\leq i\leq k} \left\{F_i - \mathbb{L}(F_i)\right\} + s + \epsilon\right)$$

$$= \mathbb{L}\left(\max_i \left\{F_i - \mathbb{L}(F_i)\right\}\right) + s + \epsilon$$

$$= \max_i \left\{\mathbb{L}\left(F_i - \mathbb{L}(F_i)\right)\right\} + s + \epsilon.$$

Since (5) implies $\mathbb{L}(F_i - \mathbb{L}(F_i)) = \mathbb{L}(F_i) - \mathbb{L}(F_i) = 0$ this shows that $s \leq \mathbb{L}(F) < s + \epsilon$. Therefore $\mathbb{L}(F) = s$, proving (2).

Proof of Theorem 2.1. Let \mathbf{X} be the Čech-Stone compactification of \mathbf{X} . Since the inclusion $\mathbf{X} \subset \hat{\mathbf{X}}$ is continuous, we define $\hat{\mathbb{L}} : \mathbf{C}_b(\hat{\mathbf{X}}) \to \mathbb{R}$ by $\hat{\mathbb{L}}(\hat{F}) := \mathbb{L}(\hat{F}|_{\mathbf{X}})$. It is clear that $\hat{\mathbb{L}}$ is a maximal Varadhan Functional, so by Lemma 3.2 there is $\mathbb{I} : \hat{\mathbf{X}} \to [0, \infty]$ such that $\hat{\mathbb{L}}(\hat{F}) = \sup\{\hat{F}(\mathbf{x}) - \mathbb{I}(\mathbf{x}) : \mathbf{x} \in \hat{\mathbf{X}}\}$.

Using σ -continuity(7) it is easy to check that $\mathbb{I}(\mathbf{x}) = \infty$ for all $\mathbf{x} \in \hat{\mathbf{X}} \setminus \mathbf{X}$. Indeed, given $\mathbf{x}_0 \in \hat{\mathbf{X}} \setminus \mathbf{X}$ by Lemma 3.1 there are $F_n \in \mathbf{C}_b(\hat{\mathbf{X}})$ such that $F_n \setminus 0$ on \mathbf{X} , but $F_n(\mathbf{x}_0) = C > 0$. Then from (3) we get $\mathbb{I}(\mathbf{x}_0) \ge \hat{\mathbb{L}}(0) + F_n(\mathbf{x}_0) - \hat{\mathbb{L}}(F_n) \to \hat{\mathbb{L}}(0) + C$. Since C > 0 is arbitrary, $\mathbb{I}(\mathbf{x}_0) = \infty$.

This shows that $\hat{\mathbb{L}}(\hat{F}) = \sup\{\hat{F}(\mathbf{x}) - \mathbb{I}(\mathbf{x}) : \mathbf{x} \in \mathbf{X}\}$ for all $\hat{F} \in \mathbf{C}_b(\hat{\mathbf{X}})$. It remains to observe that since $\hat{\mathbf{X}}$ is a Čech-Stone compactification, every function $F \in \mathbf{C}_b(\mathbf{X})$ is a restriction to \mathbf{X} of some $\hat{F} \in \mathbf{C}_b(\hat{\mathbf{X}})$ (see [7, IV.6.22]). Therefore (2) holds true for all $F \in \mathbf{C}_b(\mathbf{X})$.

To prove that the rate function is tight, suppose that there is a > 0 such that $\mathbb{I}^{-1}[0,a]$ is not compact. Then there is $\delta > 0$ and a sequence $\mathbf{x}_n \in \mathbf{X}$ such that $\mathbb{I}(\mathbf{x}_n) \leq a$, and $d(\mathbf{x}_m, \mathbf{x}_n) > \delta$ for all $m \neq n$. Since Polish spaces have Lindelöf property, there is a countable number of open balls of radius $\delta/2$ which cover \mathbf{X} . For $k = 1, 2, \ldots$, denote by $B_k \ni \mathbf{x}_k$ one of the balls that contain \mathbf{x}_k , and let ϕ_k be a bounded continuous function such that $\phi_k(\mathbf{x}_k) = 2a$ and $\phi_k = 0$ on the complement of B_k . Then $F_n = \max_{k \geq n} \phi_k \setminus 0$ pointwise. On the other hand (2) implies $\mathbb{L}(F_n) \geq L_0 + F_n(\mathbf{x}_n) - \mathbb{I}(\mathbf{x}_n) \geq L_0 + a$, contradicting (7).

Lemma 3.3. If $\mathbb{L}(\cdot)$ is a Varadhan Functional, then

(9)
$$\inf_{\mathbf{x} \in \mathbf{X}} \{ F(\mathbf{x}) - G(\mathbf{x}) \} \le \mathbb{L}(F) - \mathbb{L}(G).$$

Proof. Let $const = \inf_{\mathbf{x}} \{ F(\mathbf{x}) - G(\mathbf{x}) \}$. Clearly, $F \geq G + const$. By positivity condition (4) this implies $\mathbb{L}(F) \geq \mathbb{L}(G + const) = \mathbb{L}(G) + const$.

The next lemma is implicitly contained in the proof of [3, Theorem T.1.1]. Let $\mathcal{P}_a(\mathbf{X})$ denote all regular finitely-additive probability measures on \mathbf{X} with the Borel field.

Lemma 3.4. If $\mathbb{L}(\cdot)$ is a convex Varadhan Functional on $\mathbf{C}_b(\mathbf{X})$, then there exist a lower semicontinuous function $\mathbb{J}: \mathcal{P}_a(\mathbf{X}) \to [0, \infty]$ such that

(10)
$$\mathbb{L}(F) = \mathbb{L}(0) + \sup\{\mu(F) - \mathbb{J}(\mu) : \mu \in \mathcal{P}_a(\mathbf{X})\},\$$

and the supremum is attained.

Proof. Let $\mathbb{J}(\cdot)$ be defined by

(11)
$$\mathbb{J}(\mu) = \mathbb{L}(0) + \sup\{\mu(F) - \mathbb{L}(F) : F \in \mathbf{C}_b(\mathbf{X})\}\$$

and fix $F_0 \in \mathbf{C}_b(\mathbf{X})$. Recall that throughout this proof we assume $\mathbb{L}(0) = 0$. By the definition of $\mathbb{J}(\cdot)$, we need to show that

(12)
$$\mathbb{L}(F_o) = \sup_{\mu} \inf_{F} \{ \mu(F_0) - \mu(F) + \mathbb{L}(F) \},$$

where the supremum is taken over all $\mu \in \mathcal{P}_a(\mathbf{X})$ and the infimum is taken over all $F \in \mathbf{C}_b(\mathbf{X})$. Moreover, since (11) implies that $\mathbb{J}(\mu) \geq \mu(F_0) - \mathbb{L}(F_0)$ for all $\mu \in \mathcal{P}_a(\mathbf{X})$, then $\mathbb{L}(F_0) \geq \sup_{\mu} \inf_F \{\mu(F_0) - \mu(F) + \mathbb{L}(F)\}$. Hence to prove (12), it remains to show that there is $\nu \in \mathcal{P}_a(\mathbf{X})$ such that

(13)
$$\mathbb{L}(F_0) \le \nu(F_0) - \nu(F) + \mathbb{L}(F) \text{ for all } F \in \mathbf{C}_b(\mathbf{X})$$

(also, for this ν , the supremum in (10) will be attained). To find ν , consider the following sets. Let

$$\mathcal{M} = \{ F \in \mathbf{C}_b(\mathbf{X}) : \inf_{\mathbf{x}} [F(\mathbf{x}) - F_0(\mathbf{x})] > 0 \}$$

and let \mathcal{N} be a set of all finite convex combinations of functions $g(\mathbf{x})$ of the form $g(\mathbf{x}) = F(\mathbf{x}) + \mathbb{L}(F_0) - \mathbb{L}(F)$, where $F \in \mathbf{C}_b(\mathbf{X})$.

It is easily seen from the definitions that \mathcal{M} and \mathcal{N} are convex; also $\mathcal{M} \subset \mathbf{C}_b(\mathbf{X})$ is non-empty since $1 + F_0 \in \mathcal{M}$, and open since $\{F : \inf_{\mathbf{x}} [F(\mathbf{x}) - F_0(\mathbf{x})] \leq 0\} \subset \mathbf{C}_b(\mathbf{X})$ is closed. Furthermore, \mathcal{M} and \mathcal{N} are disjoint. Indeed, take arbitrary

$$\mathcal{N} \ni g = \sum \alpha_k F_k + \mathbb{L}(F_0) - \sum \alpha_k \mathbb{L}(F_k).$$

Then

$$\inf_{x} \{ g(\mathbf{x}) - F_0(\mathbf{x}) \}$$

$$=\inf_{x} \{ \sum_{k} \alpha_{k} F_{k}(\mathbf{x}) - F_{0}(\mathbf{x}) \} - \sum_{k} \alpha_{k} \mathbb{L}(F_{k}) + \mathbb{L}(F_{0})$$

$$\leq \inf\{\sum \alpha_k F_k(\mathbf{x}) - F_0(\mathbf{x})\} - \mathbb{L}(\sum \alpha_k F_k) + \mathbb{L}(F_0) \leq 0,$$

where the first inequality follows from the convexity of $\mathbb{L}(\cdot)$ and the second one follows from (9) applied to $F = \sum \alpha_k F_k(\mathbf{x})$ and $G = F_0$.

Therefore \mathcal{M} and \mathcal{N} can be separated, i.e. there is a non-zero linear functional $f^* \in \mathbf{C}_h^*(\mathbf{X})$ such that for some $\alpha \in \mathbb{R}$

$$(14) f^*(\mathcal{N}) \le \alpha < f^*(\mathcal{M})$$

(see e.g. [7, V. 2. 8]).

Claim: f^* is non-negative.

Indeed, it is easily seen that $F_0(\cdot)$ belongs to \mathcal{N} , and, as a limit of $\epsilon + F_0(\mathbf{x})$ as $\epsilon \to 0$, F_0 is also in the closure of \mathcal{M} . Therefore by (14) we have $\alpha = f^*(F_0)$. To end the proof take arbitrary F with $\inf_{\mathbf{x}} F(\mathbf{x}) > 0$. Then $F + F_0 \in \mathcal{M}$ and by (14)

$$f^*(F) = f^*(F + F_0) - f^*(F_0) > \alpha - f^*(F_0) = 0.$$

This ends the proof of the claim.

Without losing generality, we may assume $f^*(1) = 1$; then it is well known (see e.g. [2, Ch. 2 Section 4 Theorem 1]) that $f^*(F) = \nu(F)$ for some $\nu \in \mathcal{P}_a(\mathbf{X})$; for regularity of ν consult [7, IV.6.2]. It remains to check that ν satisfies (13). To this end observe that since $F + \mathbb{L}(F_0) - \mathbb{L}(F) \in \mathcal{N}$, by (14) we have $\nu(F) + \mathbb{L}(F_0) - \mathbb{L}(F) \leq \alpha = \nu(F_0)$ for all $F \in \mathbf{C}_b(\mathbf{X})$. This ends the proof of (10).

Proof of Theorem 2.2. Lemma 3.4 gives the variational representation (10) with the supremum taken over a too large set. To end the proof we will show that $\mathbb{J}(\mu) = \infty$ on measures μ that fail to be countably-additive.

Suppose that μ is additive but not countably additive. Then Daniell-Stone theorem implies that there is $\delta > 0$ and a sequence $F_n \searrow 0$ of bounded continuous functions such that $\int F_n d\mu > \delta > 0$ for all n. By (11) and σ -continuity, $\mathbb{J}(\mu) \geq \mathbb{L}(0) + C \int F_n d\mu - \mathbb{L}(CF_n) \geq \mathbb{L}(0) + C\delta - \mathbb{L}(CF_n) \to \mathbb{L}(0) + C\delta$. Since C > 0 is arbitrary, then $\mathbb{J}(\mu) = \infty$ for all μ that are additive but not countably-additive. Thus (10) implies (8).

References

- M. Akian, Densities of idempotent measures and large deviations. Trans. Amer. Math. Soc. 351 (1999), 4515–4543. CMP 99:17
- 2. H. Bergström, Weak convergence of measures. Acad. Press, New York, 1982. MR 84m:60027
- W. Bryc, On the large deviation principle by the asymptotic value method. In: Diffusion Processes and Related Problems in Analysis, Vol. I, ed. M. Pinsky, Birkhäuser, Boston, 1990, 447–472.
- A. de Acosta, Upper bounds for Large Deviations of Dependent Random Vectors. Zeitsch. Wahrscheinlichk. Theor. Verw. Gebiete 69 (1985), 551–565. MR 87f:60036
- A. Dembo & O. Zeitouni, Large Deviations Techniques and Applications. Jones and Bartlett, Boston, 1993. MR 95a:60034
- J-D. Deuschel & D. W. Stroock, Large Deviations. Pure and Applied Math vol. 137, Academic Press, Boston, 1989. MR 90h:60026
- N. Dunford & J. T. Schwartz, Linear Operators I. Interscience, New York, 1958. MR 90g:47001a
- 8. P. Dupuis & R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York, 1997. MR 99f:60057
- G. L. O'Brien, Sequences of capacities, with connections to large-deviation theory. J. Theoret. Probab. 9 (1996), 19–35. MR 97f:60065
- G. O'Brien & W. Vervaat, Compactness in the theory of large deviations. Stoch. Processes Appl. 57 (1995), 1–10. MR 96a:60030

- 11. A. Puhalskii, Large deviations of Semimartingales: a Maxingale Problem Approach I. Stochastics 61 (1997), 141–243. MR $\bf 98h:60033$
- S. R. S. Varadhan, Asymptotic probabilities and differential equations. Comm. Pure Appl. Math. 19 (1966), 261–286. MR 34:3083

Department of Mathematics, University of Cincinnati, P.O. Box 210025, Cincinnati, Ohio $45221{-}0025$

 $E\text{-}mail\ address{:}\ \mathtt{bellh@math.uc.edu}$

Department of Mathematics, University of Cincinnati, P.O. Box 210025, Cincinnati, Ohio $45221{-}0025$

 $E\text{-}mail\ address{:}\ \mathtt{brycwz@email.uc.edu}$