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Abstract. We prove the following result. Let C be a convex compact subset
in a topological vector space, and T : C → C a convex continuous mapping.
(See Definition 1.1.) Then T has a fixed point. Moreover, continuous mappings
that can be approximated by convex continuous mappings also have the fixed
point property.

1. Introduction

The following result is the well-known Schauder fixed point theorem:

Theorem ([25]). Let C be a convex compact subset in a normed space, and T :
C → C be a continuous mapping. Then T has a fixed point in C.

This theorem has been generalized to locally convex spaces by many authors for
various types of mappings. See, e.g., Tychonoff [27], Browder [1], Fan [5], Glicksberg
[6], Himmelberg [10], Reich [19], [20]. The following is an outstanding problem. See
[7].

Schauder’s conjecture. Let C be a convex compact subset in a topological vector
space. Then a continuous mapping T : C → C has a fixed point.

Many mathematicians have studied this problem and some progress has been
made in topological vector spaces with some special structure. See Klee [14], Zima
[29], Rzepecki [24], Hadzic [8], [9], Idzik [11], Nguyen [16], [17], Nguyen and Le
[18]. However, this problem still remains unsolved. In this paper, by strengthening
the continuity condition on the mapping T , we give a partial answer to Schauder’s
conjecture. To be more precise, we introduce the following concept:

Definition 1.1. Let X be a topological vector space. A mapping T : X → X is
said to be convex continuous at x0 ∈ X if for any open neighborhood N(Tx0) of
Tx0, there exists an open neighborhood V (x0) of x0 such that Conv(TV (x0)) ⊂
N(Tx0), where Conv(TV (x0)) represents the convex hull of TV (x0).

It is easy to see that the constant mapping is convex continuous. One can also
show that a mapping with a finite dimensional range is convex continuous. If X is
not locally convex, then the identity mapping on X is continuous but not convex
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continuous. Even though convex continuity is stronger, we show in section 3 that
some continuous mappings can be approximated by convex continuous mappings.
More precisely, we show that continuous mappings in Roberts spaces can be ap-
proximated by convex continuous mappings. We prove that Schauder’s fixed point
theorem is also true for a convex continuous approximatable mapping. When X
is a locally convex space, it turns out that these two concepts are equivalent. We
have the following:

Proposition 1.1. Let X be a locally convex space. Then T : X → X is convex
continuous if and only if T is continuous.

The proof follows from the fact that every open neighborhood of 0 contains an
open convex neighborhood of 0.

2. Schauder’s fixed point theorem

In the following, we always assume that X is a Hausdorff topological vector space
with property (W ):
X has a local base {Wi}i∈I of 0, where I is an index set with a partial order “<”,

such that Wi ⊂ Wj if i < j and for any i1, i2, · · · , ik, there is an l ∈ {1, 2, · · · , k},
such that il = max{i1, i2, · · · , ik} and Wij ⊂Wil for j = 1, 2, · · · , k, j 6= l.

For example, if X is first countable (equivalently, metrizable), then such a base
exists.

Theorem 2.1. Let X be a Hausdorff topological vector space with property (W ),
and C ⊂ X a convex compact subset. Suppose T : C → C is a convex continuous
mapping. Then T has a fixed point in C.

Proof. Let N = {Wi}i∈I be the local base of 0 such that property (W ) holds. We
may assume that {Wi}i∈I is a symmetric base. (Otherwise, put W ′i = Wi∩(−Wi).)

For any open neighborhood V of 0 and x ∈ C, by the convex continuity of T ,
there exists a Wix ∈ N , such that Wix ⊂ V and Conv{T (x+Wix)} ⊂ Tx+ V . By
continuity of addition in X , we may choose W ′ix ∈ N , such that W ′ix +W ′ix ⊂Wix .

Now, {x + W ′ix : x ∈ C} is an open covering of C, so it contains a finite open
sub-covering of C. We denote it by

⋃n
j=1(xj +W ′ixj

).
Let {ψj(x)}nj=1 be a continuous partition of unity subordinated to the covering

{xj +W ′ixj
}nj=1,

∑n
j=1 ψj(x) = 1, ∀x ∈ C.

We define a mapping TV : C → C by

TV x =
n∑
j=1

ψj(x)Txj , ∀x ∈ C.

Then it follows from the Brouwer fixed point theorem that TV has a fixed point
xV ∈ C. We claim that there exists yV ∈ C, such that

xV − yV ∈ V and xV − TyV ∈ V.(2.1)

Let ixj0 = max{ix1, ix2 , · · · , ixn}. We may assume that ψj(xV ) 6= 0, j = 1, 2, · · · , n.
(Otherwise, we exclude that term.)

Since xV ∈ xj +W ′ixj
, j = 1, 2, · · · , n, it follows that

xj ∈ xV +W ′ixj
⊂ xj0 +W ′ixj0

+W ′ixj
⊂ xj0 +W ′ixj0

+W ′ixj0
⊂ xj0 +Wixj0

, j 6= j0.
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Hence we have

TV xV =
n∑
j=1

ψj(x)Txj ∈ Conv{T (xj0 +Wixj0
)} ⊂ Txj0 + V.

Let yV = xj0 . Then xV − yV ∈ V , xV − TyV ∈ V , as desired.
By the compactness of C, we may assume that {xV , V ∈ N} has a subnet {xV ′}

such that xV ′ converges to x0 ∈ C.
By (2.1), we know that Tx0 = x0, i.e. x0 is a fixed point of T in C.
This completes the proof.

Theorem 2.1 gives a positive answer to the Schauder conjecture under the convex
continuity condition. The following (almost trivial) result shows that the convex
continuity is also necessary in some sense.

Theorem 2.2. Let X be a Hausdorff topological vector space with property (W ),
and C ⊂ X a convex compact subset, T : C → C a continuous mapping. Then T
has a fixed point in C if and only if there exists a convex compact subset C′ of C
such that T : C′ → C′ and T is convex continuous on C′.

Proof. The sufficiency follows from Theorem 2.1.
For the necessity, suppose that T has a fixed point x0 ∈ C. Set C′ = {x0}. Then

T : C′ → C′ is convex continuous.

3. Convex continuous approximatable mappings

In the following, we assume that X is a topological vector space unless specified
otherwise. In section 2, we proved Schauder’s fixed point theorem under the convex
continuity condition. However, we know that the identity mapping is not convex
continuous, and more generally, the continuous open mappings are not convex con-
tinuous, so a natural question is: How large is this class of mappings? It is difficult
to answer this question completely, but we can give a partial answer to some extent.
We shall approximate a continuous mapping by convex continuous mappings. To
be precise, we introduce the following:

Definition 3.1. Let T : D ⊆ X → D be a continuous mapping, where D is a
closed convex subset. If for any open neighborhood V of 0 there exist a closed
convex subset D′ ⊂ D and a convex continuous mapping TV : D′ → D′ such
that Tx − TV x ∈ V for all x ∈ D′, then we say that T is a convex continuous
approximatable mapping.

Proposition 3.1. The identity mapping I : D → D of a closed convex subset D
in X is convex continuous approximatable.

Proof. For any open neighborhood V of 0, take a finite dimensional subspace F
of X such that F ∩ D = D′ 6= ∅. Let I ′ = I|D′ . Then I ′ : D′ → D′ is convex
continuous and satisfies Ix − I ′x = 0 ∈ V for all x ∈ D′. By Definition 3.1, I is
convex continuous approximatable.

The following result shows that Schauder’s fixed point theorem still holds for
convex continuous approximatable mappings.

Theorem 3.1. Let C ⊂ X be a compact convex subset, and assume that X has
property (W ). (See section 2.) Suppose T : C → C is a convex continuous approx-
imatable mapping. Then T has a fixed point in C.
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Proof. For each open neighborhood V of X , there exist a closed convex subset C′

of C and a convex continuous mapping T ′ : C′ → C′ such that Tx− T ′x ∈ V for
all x ∈ C′.

By Theorem 2.1, T ′ has a fixed point xV ∈ C′. Hence we have

TxV − xV ∈ V.(3.1)

By the compactness of C, we know that {xV : V ∈ N} has a subnet {xV ′} such
that xV ′ converges to x0, where N is a local base of 0.

In view of (3.1), we know that Tx0 = x0. Therefore T has a fixed point in C.
This completes the proof.

In the following, we show that a continuous mapping in a so-called Roberts space
is convex continuous approximatable. (See [13], [18], [21], [22].) First, we recall the
definition of a Roberts space as follows:

Let X be a metrizable topological vector space. Then there exists a pseudo-
norm ‖ · ‖ on X which is monotone, i.e. ‖sx‖ ≤ ‖x‖ if s ≤ 1 (see [14], [23]),
and induces an invariant metric on X . Let A ⊂ X be a subset. We denote by:
A+ = conv(A ∪ {0}), A∗ = conv(A+ ∪ (−A+)).

Following [21], a non-zero point x0 of X is called a needle point if for every
ε > 0 there exists a finite set A(x0, ε) = {x1, x2, · · · , xn} satisfying the following
conditions:

1. ‖xi‖ < ε, i = 1, 2, · · · , n;
2. for each x ∈ A+(x0, ε), there exists an α ∈ [0, 1] such that ‖x− αx0‖ < ε;
3. x0 = 1

n

∑n
i=1 xi.

X is called a needle point space if X is complete metrizable and every non-zero
point in X is a needle point. See [13], [21] for examples.

Now assume that X is a needle point space. Following Roberts’ construction,
take x0 6= 0, and put A0 = {x0}. Define a sequence {An} of finite subsets of X by
induction as follows:

(4) ‖x‖ < εn for x ∈ An, where εn = (mn−1)−12−n, mn = cardAn, n ≥ 1;
(5) if an = {xn1 , xn2 , · · · , xnmn}, then

An+1 =
mn⋃
i=1

A(xni , εn+1), where A(xni , εn+1) satisfies (1)-(3) for i = 1, 2, · · · ,mn.

Finally, we put C =
⋃∞
i=1 A

∗
n. Then C is a compact convex set with no extreme

point. See [21]. Following [18], we call C a Roberts space.

Theorem 3.2. Let T : C → C be a continuous mapping, where C is a Roberts
space. Then T is a convex continuous approximatable mapping.

Proof. Since X is metrizable, we only need to show that for each ε > 0, there exists
a closed convex subset Cε ⊂ C, and a convex continuous mapping T ′ : Cε → Cε
such that ‖Tx− T ′x‖ < ε.

We use an auxiliary mapping defined in [18]. Take n sufficiently large such that
2−n+8 < ε. Then there exists a continuous mapping g : A∗n → A∗n such that
‖Tx− g(x)‖ < 2−1ε for all x ∈ A∗n, where g is defined in the proof of Theorem 3 in
[18].

Let Cε = A∗n, T ′ = g. By the construction of a Roberts space, A∗n is closed
convex and contained in a finite dimensional space, so T ′ is convex continuous.

The proof is complete.
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In the following, we assume that X is metrizable, Ω ⊂ X is an open nonempty
subset, T : Ω→ X is a convex continuous mapping and TΩ is relatively compact in
X . We will try to approximate T by continuous mappings with finite dimensional
range. Such an approach was used in [14], and also in [12] for the construction of
the Leray-Schauder degree. See also [2].

Theorem 3.3. Suppose TΩ∩Ω 6= ∅. Then for each V ∈ N , where N = {Wi}i∈I ,
I-countable, is a local base of 0 with property (W ), there exist an open subset ΩV ⊆
Ω, TΩ∩Ω ⊆ ΩV , a finite dimensional subspace FV of X, and a continuous mapping
TV : ΩV → FV , such that for each x ∈ ΩV , there exists a yx ∈ ΩV , such that

x− yx ∈ V, TV x− Tyx ∈ V.(3.2)

Proof. For each V ∈ N , x ∈ Ω, by the convex continuity of T , there exists a
Wix ∈ N such that Conv{T (x + Wix)} ⊂ Tx + V . Let W ′ix ∈ N be such that
W ′ix +W ′ix ⊂Wix .

Since {x + W ′ix}x∈Ω is an open covering of TΩ ∩ Ω, it has a finite sub-covering
{xj +W ′ixj

: j = 1, 2, · · · , n}.
Now, put ΩV =

⋃n
j=1(xj + W ′ixj

). Let {ψj(x), j = 1, 2, · · · , n} be a contin-
uous partition of unity subordinated to the covering {xj + W ′ixj

}nj=1, such that∑n
j=1 ψj(x) = 1. (Remark that X is metrizable, so that such a partition of unity

exists.)
We define the mapping TV : ΩV → FV = span{Txj, j = 1, 2, · · · , n} as follows:

TV x =
n∑
j=1

ψj(x)Txj , x ∈ ΩV .

Following the proof of (2.1), we conclude that (3.2) is true.

Acknowledgment

The author would like to thank the anonymous referee for his or her valuable
comments and suggestions. I am also indebted to Professors Alan Dow and Simeon
Reich for their criticism, to Professor Sergiu Aizicovici for his encouragement and
help.

References

1. F. E. Browder, The fixed point theory of multivalued mappings in topological vector spaces,
Math. Ann., 177 (1968), 283-301. MR 37:4679

2. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985. MR 86j:47001
3. J. Dugundji, A. Granas, Fixed Point Theory, I, Warzawa, 1982. MR 83j:54038
4. S. Eilenberg and D. Montgomery, Fixed point theorems for multivalued transformations, Amer.

J. Math., 58 (1946), 214-222. MR 8:51a
5. K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc.

Nat. Acad. Sci. U. S. A., 38 (1952), 121-126. MR 13:858d
6. I. Glicksberg, A further generalization of the Kakutani fixed-point theorem, with application

to Nash equilibrium points, Proc. Amer. Math. Soc., 3 (1952), 170-174. MR 13:764g

7. A. Granas, KKM-maps and their applications to nonlinear problems, The Scottish Book, Ed.,
R. D. Mauldin, Birkhauser, 1981, p. 45-61.

8. O. Hadzic, On Kakutani’s fixed point theorem in topological vector spaces, Bull. Acad. Polon.
Sci. Sér. Sci. Math., 30 (1982), 141-144. MR 84a:47073

http://www.ams.org/mathscinet-getitem?mr=37:4679
http://www.ams.org/mathscinet-getitem?mr=86j:47001
http://www.ams.org/mathscinet-getitem?mr=83j:54038
http://www.ams.org/mathscinet-getitem?mr=8:51a
http://www.ams.org/mathscinet-getitem?mr=13:858d
http://www.ams.org/mathscinet-getitem?mr=13:764g
http://www.ams.org/mathscinet-getitem?mr=84a:47073


2162 YU-QING CHEN

9. O. Hadzic, Fixed point theorems in not necessarily locally convex topological vector spaces,
Funtional Analysis, Proc. Dubrovnik 1981, Lect. Notes in Math., vol. 948, Springer-Verlag,
1982, pp. 118-130.

10. C. J. Himmelberg, Fixed points of compact multifunctions, J. Math. Anal. Appl., 38 (1972),
205-207. MR 46:2505

11. A. Idzik, Almost fixed point theorems, Proc. Amer. Math. Soc., 104 (1988), 779-784. MR
89i:47108

12. W. Kaballo, Abbildungsgrad in Hausdorffschen topologischen vektorraumen, Manuscripta
Math., 8 (1973), 209-216. MR 50:10922

13. N. J. Kalton, N. T. Peck, A re-examination of Roberts’ example of compact convex sets with
no extreme points, Math. Ann., 253 (1980), 89-101. MR 82h:46055

14. V. Klee, Leray-Schauder theory without local convexity, Math. Ann., 141 (1960), 286-296.
MR 24:A1004

15. M. Nagumo, Degree of mapping in convex linear topological spaces, Amer. J. Math., 73 (1951),

497-511. MR 13:150b
16. Nguyen To Nhu, The finite dimensional approximation property and the AR-property in needle

point spaces, J. London Math. Soc., 56 (1997), 584-594. MR 99k:46007
17. Nguyen To Nhu, The fixed point property for weakly compact convex sets: searching for a

solution to Schauder’s conjecture, Topology and its appl., 68 (1996), 1-12. MR 96k:46013
18. Nguyen To Nhu and Le Hoang Tri, No Roberts space is a counterexample to Schauder’s

conjecture, Topology 33 (1994), 371-378. MR 95h:46014
19. S. Reich, Fixed points in locally convex spaces, Math. Z., 125 (1972), 17-31. MR 46:6110
20. S. Reich, On fixed point theorems obtained from existence theorems for differential equations,

J. Math. Anal. Appl., 54 (1974), 26-36. MR 53:6373
21. J. W. Roberts, A compact convex set with no extreme points, Studia math., 60 (1977), 255-

266. MR 57:10595
22. J. W. Roberts, Pathological Compact Convex Sets in the Spaces Lp, 0 ≤ p < 1, The Altgeld

Book, University of Illinois, 1976.
23. S. Rolewicz, Metric Linear Spaces, Warszawa, 1972. MR 55:10993
24. B. Rzepecki, Remarks on Schauder’s fixed point principle and its applications, Bull. Acad.

Polon. Sci. Sér. Sci. Math., 27 (1979), 473-480. MR 81b:47073
25. J. Schauder, Der Fixpunktsatz in Funktionalraumen, Studia Math., 2 (1930), 171-180.
26. V. M. Sehgal and E. Morrison, A fixed point theorem for mutifunctions, Proc. Amer. Math.

Soc., 38 (1973), 643-646. MR 47:906
27. A. Tychonoff, Ein fixpunktsatz, Math. Ann., 111 (1935), 767-776.
28. S. S. Zhang and Y. Q. Chen, Topological degree theory and fixed point theorems in probabilistic

metric spaces, Applied Math. Mechanics, 10 (1989), 495-505. CMP 21:16
29. K. Zima, On Schauder’s fixed point theorem with respect to para-normed space, Comment.

Math. Prace Mat., 19 (1977), 421-423.

Department of Mathematics, Ohio University, Athens, Ohio 45701-2979

E-mail address: yuqchen@bing.math.ohiou.edu

Sichuan University, Chengdu, Sichuan 610064, People’s Republic of China

E-mail address: nic2601@scu.edu.cn

http://www.ams.org/mathscinet-getitem?mr=46:2505
http://www.ams.org/mathscinet-getitem?mr=89i:47108
http://www.ams.org/mathscinet-getitem?mr=50:10922
http://www.ams.org/mathscinet-getitem?mr=82h:46055
http://www.ams.org/mathscinet-getitem?mr=24:A1004
http://www.ams.org/mathscinet-getitem?mr=13:150b
http://www.ams.org/mathscinet-getitem?mr=99k:46007
http://www.ams.org/mathscinet-getitem?mr=96k:46013
http://www.ams.org/mathscinet-getitem?mr=95h:46014
http://www.ams.org/mathscinet-getitem?mr=46:6110
http://www.ams.org/mathscinet-getitem?mr=53:6373
http://www.ams.org/mathscinet-getitem?mr=57:10595
http://www.ams.org/mathscinet-getitem?mr=55:10993
http://www.ams.org/mathscinet-getitem?mr=81b:47073
http://www.ams.org/mathscinet-getitem?mr=47:906

	1. Introduction
	2. Schauder's fixed point theorem
	3. Convex continuous approximatable mappings
	Acknowledgment
	References

