IMMERSED SURFACES OF PRESCRIBED GAUSS CURVATURE INTO MINKOWSKI SPACE

YUXIN GE
(Communicated by Bennett Chow)

Abstract

Given a positive real valued function $k(x)$ on the disc, we will immerse the disc into three dimensional Minkowski space in such a way that Gauss curvature at the image point of x is $-k(x)$. Our approach lies on the construction of Gauss map of surfaces.

1. Introduction

The classical Minkowski problem is an embedding problem of differential geometry. This problem is the following: Given a positive function $K(u)$ defined on the unit sphere, does there exist a closed convex surface in \mathbb{R}^{3} having $K(u)$ as its Gauss curvature at the point on the surface where the inner normal is u ? In [11], Lewy has shown the existence of such a surface, under the condition that the function $K(u)$ is analytic. Later, by using a similar procedure, Nirenberg [13] published a paper in which he solved the Minkowski problem under the assumption that the function $K(u)$ possesses partial derivatives on the sphere up to second order. In [3], the author considers an analogous problem by using an approach, suggested in [8]: Given a positive real valued function $k(x)$ on the disc, we immerse the disc in \mathbb{R}^{3} in such a way that Gauss curvature at the image point of x is $k(x)$. In this paper, we continue exploiting this method to immerse the disc into three dimensional Minkowski space. Namely we propose and use a method for constructing immersions of surfaces in the Minkowski space $\mathbb{R}^{2,1}$ by prescribing the Gauss curvature to be a negative function of the variable x in the surface. Notice that in [3] we had an analogous construction for surfaces in the Euclidean space but with a positive Gauss curvature.

Let $B=\left\{x \in \mathbb{R}^{2},|x|<1\right\}$ be a disc in \mathbb{R}^{2}. Let $\mathbb{R}^{2,1}$ be three dimensional Minkowski space with the standard metric $g=\left(d x_{1}\right)^{2}+\left(d x_{2}\right)^{2}-\left(d x_{3}\right)^{2}$. Let $\mathbb{H}^{2}=\left\{x \in \mathbb{R}^{3}, g(x, x)=-1\right\}$ be the unit hyperboloid of two sheets and let $\mathbb{H}_{+}^{2}=\left\{x \in \mathbb{H}^{2}, x_{3}>0\right\}$ be the upper sheet contained in the half-space $\left\{x_{3}>0\right\}$.

Let $l: \partial B \longrightarrow \mathbb{H}_{+}^{2}$ be a prescribed $C^{2, \gamma}$ mapping with $\gamma>0$. We consider the space $H_{l}^{1}\left(B, \mathbb{H}_{+}^{2}\right)$ of functions u in $H^{1}\left(B, \mathbb{R}^{3}\right)$ satisfying that $u \in \mathbb{H}_{+}^{2}$ a.e. and $u=l$

[^0]on ∂B. We define on $H_{l}^{1}\left(B, \mathbb{H}_{+}^{2}\right)$ the following energy functional E :
\[

$$
\begin{equation*}
E(u)=\frac{1}{2} \int_{B} \sum_{i, j=1}^{2} a_{i j}(x) g\left(\frac{\partial u}{\partial x_{i}}, \frac{\partial u}{\partial x_{j}}\right) d x \tag{1}
\end{equation*}
$$

\]

where $a_{i j}(x)$ satisfy the following conditions:

$$
\begin{align*}
& \exists \alpha>0, \text { such that } a_{i j}(x) \xi^{i} \xi^{j} \geq \alpha|\xi|^{2}, \quad \forall x \in B, \forall \xi \in \mathbb{R}^{2} ; \tag{2}\\
& a_{i j}(x) \in C^{1, \gamma}(\bar{B}, \mathbb{R}), \quad \forall 1 \leq i, j \leq 2 \tag{3}\\
& a_{i j}=a_{j i}, \quad \forall 1 \leq i, j \leq 2 \tag{4}
\end{align*}
$$

Here, it is easy to check that the critical points of E satisfy in the sense of distributions the following Euler equation:

$$
\begin{cases}\sum_{i, j=1}^{2} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+\lambda u=0, & \text { in } B \tag{5}\\ u=l, & \text { on } \partial B\end{cases}
$$

where $\lambda=-\sum_{i, j=1}^{2} a_{i j}(x) g\left(\frac{\partial u}{\partial x_{i}}(x), \frac{\partial u}{\partial x_{j}}(x)\right)$.
Notice that $\lambda<0$. We deduce from (5) the following equality:

$$
\begin{equation*}
\sum_{i=1}^{2} \frac{\partial}{\partial x_{i}}\left(u \times \sum_{j=1}^{2} a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)=0 \tag{6}
\end{equation*}
$$

where $\xi \times \eta=\left(\xi_{2} \eta_{3}-\xi_{3} \eta_{2}, \xi_{3} \eta_{1}-\xi_{1} \eta_{3}, \xi_{2} \eta_{1}-\xi_{1} \eta_{2}\right)$ for all $\xi, \eta \in \mathbb{R}^{2,1}$ is vectorial product in $\mathbb{R}^{2,1}$. Assume that u is an immersion. Thus, we obtain a new immersion G from B to $\mathbb{R}^{2,1}$ satisfying

$$
\begin{equation*}
\frac{\partial G}{\partial x_{2}}=\sum_{j=1}^{2} a_{1 j}(x) u \times \frac{\partial u}{\partial x_{j}}, \quad \frac{\partial G}{\partial x_{1}}=-\sum_{j=1}^{2} a_{2 j}(x) u \times \frac{\partial u}{\partial x_{j}} \tag{7}
\end{equation*}
$$

Our aim here is to prove that G has the prescribed Gauss curvature. More precisely, we will show the following theorem.

Theorem. Under the above assumptions, the metric induced by g on $G(B)$ is Riemannian. Moreover, $G(B)$ has the Gauss curvature equal to $-\operatorname{det}\left(a_{i j}\right)^{-1}$ at each point $G(x)$.

This paper is organized as follows. We first prove that there exists a solution of (5) in the $C^{2, \gamma}$ norm. Then, we show that the solution u is unique. By the same strategy as in [9], we deduce that u is a diffeomorphism. Hence, using the above approach, we will establish our result.

2. Existence and Regularity

Let us first give the existence and regularity results.
Proposition 1. Under the above hypothesis, there exists a minimum $u \in H_{l}^{1}\left(B, H_{+}^{2}\right)$ of E which satisfies (5). Furthermore, one has the estimate:

$$
\begin{equation*}
\|u\|_{C^{2, \gamma}} \leq C_{1}\left(\|u\|_{H^{1}}+\|l\|_{C^{2}, \gamma}\right) \tag{8}
\end{equation*}
$$

where C_{1} is a constant depending only on α, γ and $\left\|a_{i j}\right\|_{C^{1, \gamma}}$.

Remark. Notice that the metric induced by g on \mathbb{H}_{+}^{2} is Riemannian. So it is natural for us to look for the minimum of E.

Proof. We will make use of the stereographic projection:

$$
\begin{array}{rll}
P: & \mathbb{H}_{+}^{2} & \longrightarrow B \\
& (x, y, z) & \longmapsto\left(\frac{x}{1+z}, \frac{y}{1+z}\right) . \tag{9}
\end{array}
$$

With these stereographic coordinates, we can write the the functional E as follows:

$$
\begin{equation*}
E(v)=2 \int_{B} \sum_{i, j=1}^{2} \frac{a_{i j}(x)}{\left(1-|v|^{2}\right)^{2}}\left\langle\frac{\partial v}{\partial x_{i}}, \frac{\partial v}{\partial x_{j}}\right\rangle d x \tag{10}
\end{equation*}
$$

where $v \in H_{h}^{1}\left(B, \mathbb{R}^{2}\right)$ with $h=P \circ l$ and \langle,$\rangle denotes the standard Euclidian inner$ product. Assume that $|h| \leq r$ with some $r<1$. Let $f: \mathbb{R}^{+} \longrightarrow \mathbb{R}$ be a decreasing continuous map satisfying

$$
f(z)= \begin{cases}\frac{1}{\left(1-z^{2}\right)^{2}}, & \text { if } 0 \leq z \leq r \tag{11}\\ \frac{1}{\left(1-r^{2}\right)^{2}}, & \text { if } z \geq r\end{cases}
$$

Consider the second energy functional E_{1}

$$
E_{1}(v)=2 \int_{B} \sum_{i, j=1}^{2} a_{i j}(x) f(|v|)\left\langle\frac{\partial v}{\partial x_{i}}, \frac{\partial v}{\partial x_{j}}\right\rangle d x
$$

where $v \in H_{h}^{1}\left(B, \mathbb{R}^{2}\right)$. Obviously,

$$
E_{1}(v) \leq E(v)
$$

By coerciveness and lower semi-continuity of E_{1} (see [5] and [15]), it is clear that there exists $w \in H_{h}^{1}\left(B, \mathbb{R}^{2}\right)$ minimizing E_{1}. We define \tilde{w} by

$$
\tilde{w}_{i}(x)= \begin{cases}w_{i}(x), & \text { if }\left|w_{i}(x)\right| \leq r \tag{12}\\ r, & \text { if } w_{i}(x) \geq r \\ -r, & \text { if } w_{i}(x) \leq-r\end{cases}
$$

for $i=1,2$. Obviously, $\tilde{w} \in H_{h}^{1}\left(B, \mathbb{R}^{2}\right)$ and $E_{1}(\tilde{w}) \leq E_{1}(w)$. Thus, $\left|w_{i}(x)\right| \leq r$ a.e. for $i=1$, 2. Replacing w by $\left(w_{1} \cos \theta-w_{2} \sin \theta, w_{1} \sin \theta+w_{2} \cos \theta\right)$ for any $\theta \in \mathbb{R}$, we deduce that $|w(x)| \leq r$ a.e. So w is also a minimizer of E. Thanks to a result due to Jost and Meier [10], Lemma 1 (see also [3], Lemma 1), we conclude that there exists $q>2$ such that

$$
\begin{equation*}
\|w\|_{W^{1, q}\left(B, \mathbb{R}^{2}\right)} \leq C_{4}\left(\|w\|_{H^{1}\left(B, \mathbb{R}^{2}\right)}+\|h\|_{C^{1}}\right) \tag{13}
\end{equation*}
$$

where the constants C_{4} and q depend only on α and $\left\|a_{i j}\right\|_{C^{1}}$. Now we consider $u=P^{-1} \circ w$ and return to equation (5). From L^{p}-estimates and using Sobolev embedding theorem, we have

$$
\|u\|_{W^{1, \frac{2 q}{4-q}}} \leq C\|u\|_{W^{2, \frac{q}{2}}} \leq C\left(\|u\|_{H^{1}}+\|l\|_{C^{2}}\right), \quad \text { if } q<4
$$

Iterating the above procedure and using Schauder estimates, we complete the proof (cf. [5]).

3. UNIQUENESS

In this part, our main result is the following:
Proposition 2. The solution for equation (5) in $C^{2}\left(\bar{B}, \mathbb{H}_{+}^{2}\right)$ is unique.
Remark. This result and the proof we propose generalize an analogous result for harmonic maps due independently to [6] and [1].

Denote ∇ the Levi-Civita connection on \mathbb{H}_{+}^{2} for the metric g. Let $u_{1} \in C^{2}\left(\bar{B}, \mathbb{H}_{+}^{2}\right)$ be a map with the same boundary condition as u. For any $x \in \bar{B}$, let $\gamma_{x}(s)$ denote the unique geodesic arc in \mathbb{H}_{+}^{2} parametrized with constant speed (depending on $x)$ for $s \in[0,1]$, and connecting $u(x)$ with $u_{1}(x)$. The uniqueness of $\gamma_{x}(s)$ follows from \mathbb{H}_{+}^{2} having nonpositive curvature and simply connected. Define a C^{2} map $F: \bar{B} \times[0,1] \longrightarrow \mathbb{H}_{+}^{2}$ by $F(x, s)=\gamma_{x}(s)$ and let $u_{s} \in C^{2}\left(\bar{B}, \mathbb{H}_{+}^{2}\right)$ be given by $u_{s}(x)=F(x, s)$. Then, F is a deformation of u. We will write the first and second variations of the energy E (see [2]).

Lemma 1. Under the above hypothesis, we have the following formulas:

$$
\begin{equation*}
\frac{d E\left(u_{s}\right)}{d s}=-\int_{B} g\left(\frac{\partial u_{s}}{\partial s}, \nabla_{\frac{\partial}{\partial x_{i}}}\left(\sum_{i, j=1}^{2} a_{i j} \frac{\partial u_{s}}{\partial x_{j}}\right)\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{d^{2} E\left(u_{s}\right)}{d s^{2}}=- & \int_{B} \sum_{i, j=1}^{2} a_{i j} R\left(\frac{\partial F}{\partial s}, \frac{\partial F}{\partial x_{i}}, \frac{\partial F}{\partial x_{j}}, \frac{\partial F}{\partial s}\right) \tag{15}\\
& +\int_{B} \sum_{i, j=1}^{2} a_{i j} g\left(\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial u_{s}}{\partial s}, \nabla_{\frac{\partial}{\partial x_{j}}} \frac{\partial u_{s}}{\partial s}\right)
\end{align*}
$$

where R is the curvature of \mathbb{H}_{+}^{2}.
Proof. First, we suppose that F is C^{∞}. By definition,

$$
E\left(u_{s}\right)=\frac{1}{2} \int_{B} \sum_{i, j=1}^{2} a_{i j}(x) g\left(\frac{\partial u_{s}}{\partial x_{i}}, \frac{\partial u_{s}}{\partial x_{j}}\right) d x
$$

Differentiating under the integral sign and using the symmetry of the Riemannian connection, we obtain

$$
\begin{aligned}
\frac{d E\left(u_{s}\right)}{d s} & =\int_{B} \sum_{i, j=1}^{2} a_{i j}(x) g\left(\nabla_{\frac{\partial}{\partial s}} \frac{\partial u_{s}}{\partial x_{i}}, \frac{\partial u_{s}}{\partial x_{j}}\right) d x \\
& =\int_{B} \sum_{i, j=1}^{2} a_{i j}(x) g\left(\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial u_{s}}{\partial s}, \frac{\partial u_{s}}{\partial x_{j}}\right) d x \\
& =-\int_{B} g\left(\frac{\partial u_{s}}{\partial s}, \nabla_{\frac{\partial}{\partial x_{i}}}\left(\sum_{i, j=1}^{2} a_{i j} \frac{\partial u_{s}}{\partial x_{j}}\right)\right) d x
\end{aligned}
$$

since $\frac{\partial F}{\partial s}=0$ on ∂B. Therefore, we obtain (14). Taking the derivative of (14), we have

$$
\begin{aligned}
\frac{d^{2} E\left(u_{s}\right)}{d s^{2}}= & -\int_{B} g\left(\frac{\partial u_{s}}{\partial s}, \nabla_{\frac{\partial}{\partial s}} \nabla_{\frac{\partial}{\partial x_{i}}}\left(\sum_{i, j=1}^{2} a_{i j} \frac{\partial u_{s}}{\partial x_{j}}\right)\right) d x \\
= & -\int_{B} \sum_{i, j=1}^{2} a_{i j} R\left(\frac{\partial F}{\partial s}, \frac{\partial F}{\partial x_{i}}, \frac{\partial F}{\partial x_{j}}, \frac{\partial F}{\partial s}\right) \\
& -\int_{B} g\left(\frac{\partial u_{s}}{\partial s}, \nabla_{\frac{\partial}{\partial x_{i}}} \nabla_{\frac{\partial}{\partial s}}\left(\sum_{i, j=1}^{2} a_{i j} \frac{\partial u_{s}}{\partial x_{j}}\right)\right) d x \\
= & -\int_{B} \sum_{i, j=1}^{2} a_{i j} R\left(\frac{\partial F}{\partial s}, \frac{\partial F}{\partial x_{i}}, \frac{\partial F}{\partial x_{j}}, \frac{\partial F}{\partial s}\right) \\
& +\int_{B} \sum_{i, j=1}^{2} a_{i j} g\left(\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial u_{s}}{\partial s}, \nabla_{\frac{\partial}{\partial x_{j}}} \frac{\partial u_{s}}{\partial s}\right) d x .
\end{aligned}
$$

Thus, we establish (15). By density, we finish the proof.
Proof of Proposition 2. Suppose that $u_{1} \in C_{l}^{2}\left(\bar{B}, \mathbb{H}_{+}^{2}\right)$ is another solution for equation (5). Putting $s=0$ and $s=1$ in (14), we obtain

$$
\left.\frac{d E\left(u_{s}\right)}{d s}\right|_{s=0,1}=0
$$

On the other hand, we have

$$
\frac{d^{2} E\left(u_{s}\right)}{d s^{2}} \geq 0
$$

since $-R\left(\frac{\partial F}{\partial s}, \cdot, \cdot, \frac{\partial F}{\partial s}\right)$ is a positive quadratic form, that is, $E\left(u_{s}\right)$ is convex. Thus, $E\left(u_{s}\right) \equiv E\left(u_{0}\right)$. Thanks to formula (15), we infer that $\frac{\partial F}{\partial s} \equiv 0$. This contradiction completes the proof.

4. The diffeomorphism property

Let $l: \partial B \longrightarrow \mathbb{H}^{2} \cap\left\{x_{3}=\alpha_{1}, \alpha_{1}>1\right\}$ be a C^{2} diffeomorphism with $\operatorname{deg}(l, \partial B)$ $=1$. We will prove the following result.
Proposition 3. Under the above assumptions, the unique minimizer u of E is a diffeomorphism and $\operatorname{rank}(\nabla u(x))=2$ for all $x \in \bar{B}$.

The proof here is the same as in 3]. To prove this fact, we will consider the following energy functional:

$$
\begin{equation*}
E_{t}(u)=\frac{1}{2} \int_{B} \sum_{i, j=1}^{2}\left[(1-t) \delta_{i j}+t a_{i j}(x)\right] g\left(\frac{\partial u}{\partial x_{i}}, \frac{\partial u}{\partial x_{j}}\right) d x \tag{16}
\end{equation*}
$$

Let $I_{t}=\inf _{v \in H_{l}^{1}\left(B, \mathbb{H}_{+}^{2}\right)} E_{t}(v)$. Denote $u^{t} \in H_{l}^{1}\left(B, \mathbb{H}_{+}^{2}\right)$ the unique minimum of E_{t} in $H_{l}^{1}\left(B, \mathbb{H}_{+}^{2}\right)$ given by Propositions 1 and 2 , then u^{t} satisfies:

$$
\begin{cases}\sum_{i, j=1}^{2} \frac{\partial}{\partial x_{i}}\left(\left[(1-t) \delta_{i j}+t a_{i j}(x)\right] \frac{\partial u^{t}}{\partial x_{j}}\right)+\lambda_{t} u^{t}=0, & \text { in } B \tag{17}\\ u^{t}=l, & \text { on } \partial B\end{cases}
$$

where $\lambda_{t}=-\sum_{i, j=1}^{2}\left[(1-t) \delta_{i j}+t a_{i j}(x)\right] g\left(\frac{\partial u^{t}}{\partial x_{i}}(x), \frac{\partial u^{t}}{\partial x_{j}}(x)\right) . u^{t}$ is in $C^{2}\left(\bar{B}, \mathbb{H}_{+}^{2}\right)$ by
Proposition 1. Define a mapping F_{*} :

$$
\begin{aligned}
F_{*}: \quad[0,1] & \longrightarrow C^{2}\left(\bar{B}, \mathbb{H}_{+}^{2}\right), \\
t & \longmapsto u^{t} .
\end{aligned}
$$

We need also several technical lemmas.
Lemma 2. With the above notations, we have $\operatorname{rank}\left(\nabla u^{t}(x)\right)=2$, for any $t \in[0,1]$ and $x \in \partial B$.

The proof is the same as that of Lemma 5 in [3].
Lemma 3. F_{*} is continuous.
Proof. First we notice that I_{t} is continuous. Indeed, for some fixed $v \in H_{l}^{1}\left(B, \mathbb{H}_{+}^{2}\right)$

$$
0 \leq I_{t} \leq \frac{1}{2}\left(4+\sum_{i, j=1}^{2}\left\|a_{i j}\right\|_{C^{0}}\right)\|\nabla v\|_{L^{2}}^{2} \leq C, \quad \forall 0 \leq t \leq 1
$$

On the other hand, we have that for any $0 \leq t, t^{\prime} \leq 1$

$$
\left|I_{t}-I_{t^{\prime}}\right| \leq \frac{1}{\min (1, \alpha)}\left|t-t^{\prime}\right|\left(4+\sum_{i, j=1}^{2}\left\|a_{i j}\right\|_{C^{0}}\right) \max \left\{I_{t}, I_{t^{\prime}}\right\}
$$

Then the claim yields. Now let t be fixed. Assume that $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ is a sequence converging to t. It follows from Proposition 1 that $\left\{u^{t_{n}}\right\}_{n \in \mathbb{N}}$ is compact in $C^{2}\left(\bar{B}, \mathbb{H}_{+}^{2}\right)$. Modulo a subsequence, we can assume that $u^{t_{n}} \longrightarrow u$ in $C^{2}\left(\bar{B}, \mathbb{H}_{+}^{2}\right)$ for $u \in$ $C^{2}\left(\bar{B}, \mathbb{H}_{+}^{2}\right) \cap H_{l}^{1}\left(B, \mathbb{H}_{+}^{2}\right)$. Clearly,

$$
E_{t}(u)=I_{t}
$$

Now by Proposition 2, we terminate the proof.
Proof of Proposition 3. We define a set

$$
T_{1}=\left\{t \in[0,1], u^{t} \text { is a diffeomorphism }\right\}
$$

Step 0 : T_{1} is not empty.
In view of Theorem 5.1.1 in [9] (see also [3], Lemma 7), we have $0 \in T_{1}$.
Step 1 : T_{1} is open.
Let $t_{1} \in T_{1}$. Applying Lemmas 2 and 3, we get
$\exists \tau_{1}>0$, s.t. $\left.\forall t \in\right] t_{1}-\tau_{1}, t_{1}+\tau_{1}\left[\cap[0,1] \Longrightarrow \operatorname{rank}\left(\nabla u^{t}(x)\right)=2, \quad \forall x \in \bar{B}\right.$.
Now the claim follows from a result in [14] (see also [3], Lemma 6).
Step 2: T_{1} is also closed.
Let $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ be a sequence converging to t. Assume that $u^{t_{n}}$ are diffeomorphisms, $\forall n \in \mathbb{N}$. We suppose that

$$
\exists x_{0} \in \bar{B}, \quad \text { s.t. } \quad \operatorname{det}\left(\nabla\left(P \circ u^{t}\right)\left(x_{0}\right)\right)=0
$$

Denote $v=P \circ u^{t}$ and choose $\theta \in \mathbb{R}$ such that

$$
\left(\left(\nabla v_{1}\right) \cos \theta+\left(\nabla v_{2}\right) \sin \theta\right)\left(x_{0}\right)=0
$$

Define $\omega_{*}=\omega_{1} \cos \theta+\omega_{2} \sin \theta$ for all continous functions $\omega: B \longrightarrow \mathbb{R}^{2}$. Thanks to the results of Hartman and Wintner [7], Theorems 1 and 2 (see also 3], Lemma 9), there exists some $n_{1} \geq 1$ and $a \in \mathbb{C}^{*}$ such that

$$
\partial_{z} v_{*}(z)=a\left(z-z_{0}\right)^{n_{1}}+o\left(\left|z-z_{0}\right|^{n_{1}}\right)
$$

where $z_{0}=\left(x_{0}\right)_{1}+i\left(x_{0}\right)_{2}$. Therefore, there exists $r_{0}>0$ and some n sufficiently large such that

$$
\operatorname{deg}\left(\left.\partial_{z}\left(P \circ u^{t_{n}}\right)_{*}\right|_{\partial B\left(z_{0}, r_{0}\right)}, 0\right)=\operatorname{deg}\left(\left.\partial_{z} v_{*}\right|_{\partial B\left(z_{0}, r_{0}\right)}, 0\right)=n_{1} \geq 1
$$

However, by property of degree, this contradicts that $u^{t_{n}}$ is a diffeomorphism. Hence, Proposition 3 is proved.

5. Proof of the Theorem

Now, with the above results and preceding method, we can prove our main result. Note first that $g\left(\frac{\partial G}{\partial x_{i}}, u(x)\right)=0$ for $i=1,2$. That is, $u(x)$ is the normal vector on $G(B)$ at point $G(x)$ for all $x \in \bar{B}$. On the other hand, we have

$$
\begin{aligned}
g\left(u \times u_{x_{1}}, u \times u_{x_{1}}\right)= & \left(u^{3}\right)^{2}\left(u_{x_{1}}^{2}\right)^{2}+\left(u^{2}\right)^{2}\left(u_{x_{1}}^{3}\right)^{2}-2 u^{2} u_{x_{1}}^{2} u^{3} u_{x_{1}}^{3}+\left(u^{3}\right)^{2}\left(u_{x_{1}}^{1}\right)^{2} \\
& +\left(u^{1}\right)^{2}\left(u_{x_{1}}^{3}\right)^{2}-2 u^{1} u_{x_{1}}^{1} u^{3} u_{x_{1}}^{3}-\left(u^{1}\right)^{2}\left(u_{x_{1}}^{2}\right)^{2}-\left(u^{2}\right)^{2}\left(u_{x_{1}}^{1}\right)^{2} \\
& +2 u^{2} u_{x_{1}}^{2} u^{1} u_{x_{1}}^{1} \\
= & \left(u^{3}\right)^{2}\left(\left(u_{x_{1}}^{2}\right)^{2}+\left(u_{x_{1}}^{1}\right)^{2}\right)+\left(u^{2}\right)^{2}\left(\left(u_{x_{1}}^{3}\right)^{2}-\left(u_{x_{1}}^{1}\right)^{2}\right) \\
& +\left(u^{1}\right)^{2}\left(\left(u_{x_{1}}^{3}\right)^{2}-\left(u_{x_{1}}^{2}\right)^{2}\right)-2\left(u^{3}\right)^{2}\left(u_{x_{1}}^{3}\right)^{2}+2 u^{2} u_{x_{1}}^{2} u^{1} u_{x_{1}}^{1},
\end{aligned}
$$

since $g\left(u, u_{x_{1}}\right)=0$ (here subscripts denote partial differentiation with respect to coordinates). With help of the equalities $u^{3}=\sqrt{1+\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}}$ and $\left(u_{x_{1}}^{3}\right)^{2}=$ $\frac{\left(u^{1} u_{x_{1}}^{1}+u^{2} u_{x_{1}}^{2}\right)^{2}}{1+\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}}$, we deduce

$$
g\left(u \times u_{x_{1}}, u \times u_{x_{1}}\right)=g\left(u_{x_{1}}, u_{x_{1}}\right) .
$$

Replacing x_{1} by x_{2} and $x_{1}+x_{2}$, implies

$$
g\left(u \times u_{x_{2}}, u \times u_{x_{2}}\right)=g\left(u_{x_{2}}, u_{x_{2}}\right) \quad \text { and } \quad g\left(u \times u_{x_{1}}, u \times u_{x_{2}}\right)=g\left(u_{x_{1}}, u_{x_{2}}\right) .
$$

Therefore, we conclude that G is an immersion and that the metric induced on $G(B)$ is Riemannian.

Now we will calculate the curvature of $G(B)$. Denote D (resp. ∇) the Levi-Civita connection on $\mathbb{R}^{2,1}$ (resp. $G(B)$) and R the curvature. Obviously, we have

$$
\nabla_{X} Y=D_{X} Y+g\left(D_{X} Y, u\right) u
$$

where X and Y are vector fields on $G(B)$. So, this implies

$$
\begin{aligned}
& R\left(\frac{\partial G}{\partial x_{1}}, \frac{\partial G}{\partial x_{2}}, \frac{\partial G}{\partial x_{2}}, \frac{\partial G}{\partial x_{1}}\right) \\
= & g\left(\nabla_{\frac{\partial}{\partial x_{1}}} \nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial G}{\partial x_{2}}-\nabla_{\frac{\partial}{\partial x_{2}}} \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial G}{\partial x_{2}}, \frac{\partial G}{\partial x_{1}}\right) \\
= & g\left(D_{\frac{\partial}{\partial x_{1}}} \nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial G}{\partial x_{2}}-D_{\frac{\partial}{\partial x_{2}}} \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial G}{\partial x_{2}}, \frac{\partial G}{\partial x_{1}}\right) \\
= & g\left(D_{\frac{\partial}{\partial x_{2}}} \frac{\partial G}{\partial x_{2}}, u\right) g\left(D_{\frac{\partial}{\partial x_{1}}} u, \frac{\partial G}{\partial x_{1}}\right)-g\left(D_{\frac{\partial}{\partial x_{1}}} \frac{\partial G}{\partial x_{2}}, u\right) g\left(D_{\frac{\partial}{\partial x_{2}}} u, \frac{\partial G}{\partial x_{1}}\right) \\
= & -g\left(D_{\frac{\partial}{\partial x_{2}}} u, \frac{\partial G}{\partial x_{2}}\right) g\left(D_{\frac{\partial}{\partial x_{1}}} u, \frac{\partial G}{\partial x_{1}}\right)+g\left(D_{\frac{\partial}{\partial x_{1}}} u, \frac{\partial G}{\partial x_{2}}\right) g\left(D_{\frac{\partial}{\partial x_{2}}} u, \frac{\partial G}{\partial x_{1}}\right) \\
= & \left(-a_{11} a_{22}+a_{12}^{2}\right) g\left(u \times u_{x_{1}}, u_{x_{2}}\right)^{2},
\end{aligned}
$$

since $g\left(u \times u_{x_{i}}, u_{x_{i}}\right)=0$ for $i=1,2$. On the other hand,

$$
\begin{aligned}
& g\left(G_{x_{1}}, G_{x_{1}}\right) g\left(G_{x_{2}}, G_{x_{2}}\right)-g\left(G_{x_{1}}, G_{x_{2}}\right)^{2} \\
= & g\left(\sum_{j=1}^{2} a_{2 j} u \times u_{x_{j}}, \sum_{k=1}^{2} a_{2 k} u \times u_{x_{k}}\right) g\left(\sum_{j=1}^{2} a_{1 j} u \times u_{x_{j}}, \sum_{k=1}^{2} a_{1 k} u \times u_{x_{k}}\right) \\
& -g\left(\sum_{j=1}^{2} a_{1 j} u \times u_{x_{j}}, \sum_{k=1}^{2} a_{2 k} u \times u_{x_{k}}\right)^{2} \\
= & g\left(\sum_{j=1}^{2} a_{2 j} u_{x_{j}}, \sum_{k=1}^{2} a_{2 k} u_{x_{k}}\right) g\left(\sum_{j=1}^{2} a_{1 j} u_{x_{j}}, \sum_{k=1}^{2} a_{1 k} u_{x_{k}}\right)-g\left(\sum_{j=1}^{2} a_{1 j} u_{x_{j}}, \sum_{k=1}^{2} a_{2 k} u_{x_{k}}\right)^{2} \\
= & \operatorname{det}\left(a_{i j}\right)^{2}\left(g\left(u_{x_{1}}, u_{x_{1}}\right) g\left(u_{x_{2}}, u_{x_{2}}\right)-g\left(u_{x_{1}}, u_{x_{2}}\right)^{2}\right) \\
= & -\operatorname{det}\left(a_{i j}\right)^{2} g\left(u_{x_{1}} \times u_{x_{2}}, u_{x_{1}} \times u_{x_{2}}\right) \\
= & \operatorname{det}\left(a_{i j}\right)^{2} g\left(u \times u_{x_{1}}, u_{x_{2}}\right)^{2}
\end{aligned}
$$

Hence, $K(G(x))=-\operatorname{det}\left(a_{i j}(x)\right)^{-1}$.

References

[1] S. I. Al'ber, Spaces of mappings into a manifold with negative curvature, Dokl. Akad. Nauk. SSSR. Tom 178 (1968), No. 1. MR 37:5817
[2] J. Eells and L. Lemaire, A report on the harmonic maps, Bull. London. Math. Soc 10 (1978), 1-68.
[3] Y. Ge, An elliptic variational approach to immersed surfaces of prescribed Gauss curvature, Calc. Var. 7 (1998) 173-190.
[4] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. Math. Studies. 105, Princeton. Univ. Press, Princeton (1983). MR 86b:49003
[5] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren. 224, Spinger, Berlin-Heidelberg-New York-Tokyo (1983). MR 86c:35035
[6] P. Hartman, On homotopic harmonic maps, Canad. J. Math. 19 (1967) 673-687. MR 35:4856
[7] P. Hartman and A. Wintner, On the local behavior of solutions of nonparabolic partial differential equations, Amer. J. Math. 75 (1953) 449-476. MR 15:318b
[8] F. Hélein, Applications harmoniques, lois de conservation et repère mobile, Diderot éditeur, Paris-New York-Amsterdam (1996).
[9] J. Jost, Two-dimensional geometric variational problems, Wiley (1991). MR 92h:58045
[10] J. Jost and M. Meier, Boundary regularity for minima of certain quadratic functionals, Math. Ann. 262 (1983) 549-561. MR 84i:35051
[11] H. Lewy, On differential geometry in the large, I (Minkowski's problem), Trans. Amer. Math. Soc. 43 (1938) 258-270. CMP 95:18
[12] C. B. Morrey, Multiple integrals in the calculus of variations, Springer, Grundlehren. 130, New York (1966). MR 34:2380
[13] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1966), 337-394. MR 15:347b
[14] Stoïlow, Leçons sur les principes topologiques de la théorie des fonctions analytiques, Paris (1938), Gauthier-Villars, p. 130.
[15] M. Struwe, Variational Methods, Springer, Berlin-Heidelberg-New York-Tokyo (1990).
Département de Mathématiques, Faculté de Sciences et Technologie, Université Paris XII-Val de Marne, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
C.M.L.A., E.N.S de Cachan, 61, avenue du Président Wilson, 94235 Cachan Cedex, France

E-mail address: ge@cmla.ens-cachan.fr

[^0]: Received by the editors April 29, 1999 and, in revised form, October 20, 1999.
 2000 Mathematics Subject Classification. Primary 53C42, 53B25.
 Key words and phrases. Gauss curvature, surfaces, Minkowski space, harmonic maps.

