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IMMERSED SURFACES OF PRESCRIBED GAUSS CURVATURE
INTO MINKOWSKI SPACE

YUXIN GE

(Communicated by Bennett Chow)

Abstract. Given a positive real valued function k(x) on the disc, we will
immerse the disc into three dimensional Minkowski space in such a way that
Gauss curvature at the image point of x is −k(x). Our approach lies on the
construction of Gauss map of surfaces.

1. Introduction

The classical Minkowski problem is an embedding problem of differential geom-
etry. This problem is the following: Given a positive function K(u) defined on the
unit sphere, does there exist a closed convex surface in R3 having K(u) as its Gauss
curvature at the point on the surface where the inner normal is u? In [11], Lewy
has shown the existence of such a surface, under the condition that the function
K(u) is analytic. Later, by using a similar procedure, Nirenberg [13] published a
paper in which he solved the Minkowski problem under the assumption that the
function K(u) possesses partial derivatives on the sphere up to second order. In
[3], the author considers an analogous problem by using an approach, suggested in
[8]: Given a positive real valued function k(x) on the disc, we immerse the disc in
R3 in such a way that Gauss curvature at the image point of x is k(x). In this pa-
per, we continue exploiting this method to immerse the disc into three dimensional
Minkowski space. Namely we propose and use a method for constructing immer-
sions of surfaces in the Minkowski space R2,1 by prescribing the Gauss curvature
to be a negative function of the variable x in the surface. Notice that in [3] we had
an analogous construction for surfaces in the Euclidean space but with a positive
Gauss curvature.

Let B = {x ∈ R2, | x | < 1} be a disc in R2. Let R2,1 be three dimensional
Minkowski space with the standard metric g = (dx1)2 + (dx2)2 − (dx3)2. Let
H2 = {x ∈ R3, g(x, x) = −1} be the unit hyperboloid of two sheets and let
H2

+ = {x ∈ H2, x3 > 0} be the upper sheet contained in the half-space {x3 > 0}.
Let l : ∂B −→ H2

+ be a prescribed C2,γ mapping with γ > 0. We consider the
space H1

l (B,H2
+) of functions u in H1(B,R3) satisfying that u ∈ H2

+ a.e. and u = l
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on ∂B. We define on H1
l (B,H2

+) the following energy functional E:

E(u) =
1
2

∫
B

2∑
i,j=1

aij(x)g
(
∂u

∂xi
,
∂u

∂xj

)
dx,(1)

where aij(x) satisfy the following conditions:

∃ α > 0, such that aij(x)ξiξj ≥ α| ξ |2, ∀ x ∈ B, ∀ ξ ∈ R2;(2)

aij(x) ∈ C1,γ(B̄,R), ∀ 1 ≤ i, j ≤ 2;(3)

aij = aji, ∀ 1 ≤ i, j ≤ 2.(4)

Here, it is easy to check that the critical points of E satisfy in the sense of
distributions the following Euler equation:

2∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ λu = 0, in B,

u = l, on ∂B,

(5)

where λ = −
2∑

i,j=1

aij(x)g
(
∂u

∂xi
(x),

∂u

∂xj
(x)
)

.

Notice that λ < 0. We deduce from (5) the following equality:

2∑
i=1

∂

∂xi

u× 2∑
j=1

aij(x)
∂u

∂xj

 = 0,(6)

where ξ × η = (ξ2η3 − ξ3η2, ξ3η1 − ξ1η3, ξ2η1 − ξ1η2) for all ξ, η ∈ R2,1 is vectorial
product in R2,1. Assume that u is an immersion. Thus, we obtain a new immersion
G from B to R2,1 satisfying

∂G

∂x2
=

2∑
j=1

a1j(x)u × ∂u

∂xj
,

∂G

∂x1
= −

2∑
j=1

a2j(x)u × ∂u

∂xj
.(7)

Our aim here is to prove that G has the prescribed Gauss curvature. More precisely,
we will show the following theorem.

Theorem. Under the above assumptions, the metric induced by g on G(B) is Rie-
mannian. Moreover, G(B) has the Gauss curvature equal to −det(aij)−1 at each
point G(x).

This paper is organized as follows. We first prove that there exists a solution of
(5) in the C2,γ norm. Then, we show that the solution u is unique. By the same
strategy as in [9], we deduce that u is a diffeomorphism. Hence, using the above
approach, we will establish our result.

2. Existence and regularity

Let us first give the existence and regularity results.

Proposition 1. Under the above hypothesis, there exists a minimum u∈H1
l (B,H2

+)
of E which satisfies (5). Furthermore, one has the estimate:

‖u‖C2,γ ≤ C1(‖u‖H1 + ‖l‖C2,γ ),(8)

where C1 is a constant depending only on α, γ and ‖aij‖C1,γ .
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Remark. Notice that the metric induced by g on H2
+ is Riemannian. So it is natural

for us to look for the minimum of E.

Proof. We will make use of the stereographic projection:

P : H2
+ −→ B,

(x, y, z) 7−→
(

x

1 + z
,

y

1 + z

)
.

(9)

With these stereographic coordinates, we can write the the functional E as follows:

E(v) = 2
∫
B

2∑
i,j=1

aij(x)

(1− | v |2)2

〈
∂v

∂xi
,
∂v

∂xj

〉
dx,(10)

where v ∈ H1
h(B,R2) with h = P ◦ l and 〈, 〉 denotes the standard Euclidian inner

product. Assume that |h| ≤ r with some r < 1. Let f : R+ −→ R be a decreasing
continuous map satisfying

f(z) =


1

(1− z2)2
, if 0 ≤ z ≤ r;

1
(1− r2)2

, if z ≥ r.
(11)

Consider the second energy functional E1

E1(v) = 2
∫
B

2∑
i,j=1

aij(x)f(|v|)
〈
∂v

∂xi
,
∂v

∂xj

〉
dx,

where v ∈ H1
h(B,R2). Obviously,

E1(v) ≤ E(v).

By coerciveness and lower semi-continuity of E1 (see [5] and [15]), it is clear that
there exists w ∈ H1

h(B,R2) minimizing E1. We define w̃ by

w̃i(x) =


wi(x), if |wi(x)| ≤ r;
r, if wi(x) ≥ r;
−r, if wi(x) ≤ −r,

(12)

for i = 1, 2. Obviously, w̃ ∈ H1
h(B,R2) and E1(w̃) ≤ E1(w). Thus, | wi(x) |≤ r a.e.

for i = 1, 2. Replacing w by (w1cosθ−w2sinθ, w1sinθ+w2cosθ) for any θ ∈ R, we
deduce that | w(x) |≤ r a.e. So w is also a minimizer of E. Thanks to a result due
to Jost and Meier [10], Lemma 1 (see also [3], Lemma 1), we conclude that there
exists q > 2 such that

‖w‖W 1,q(B,R2) ≤ C4(‖w‖H1(B,R2) + ‖h‖C1),(13)

where the constants C4 and q depend only on α and ‖aij‖C1 . Now we consider
u = P−1 ◦ w and return to equation (5). From Lp-estimates and using Sobolev
embedding theorem, we have

‖u‖
W

1, 2q
4−q
≤ C‖u‖

W 2, q2
≤ C(‖u‖H1 + ‖l‖C2), if q < 4.

Iterating the above procedure and using Schauder estimates, we complete the proof
(cf. [5]).
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3. Uniqueness

In this part, our main result is the following:

Proposition 2. The solution for equation (5) in C2(B̄,H2
+) is unique.

Remark. This result and the proof we propose generalize an analogous result for
harmonic maps due independently to [6] and [1].

Denote∇ the Levi-Civita connection onH2
+ for the metric g. Let u1 ∈ C2(B̄,H2

+)
be a map with the same boundary condition as u. For any x ∈ B̄, let γx(s) denote
the unique geodesic arc in H2

+ parametrized with constant speed (depending on
x) for s ∈ [0, 1], and connecting u(x) with u1(x). The uniqueness of γx(s) follows
from H2

+ having nonpositive curvature and simply connected. Define a C2 map
F : B̄ × [0, 1] −→ H2

+ by F (x, s) = γx(s) and let us ∈ C2(B̄,H2
+) be given by

us(x) = F (x, s). Then, F is a deformation of u. We will write the first and second
variations of the energy E (see [2]).

Lemma 1. Under the above hypothesis, we have the following formulas:

dE(us)
ds

= −
∫
B

g

∂us
∂s

,∇ ∂
∂xi

(
2∑

i,j=1

aij
∂us
∂xj

)

(14)

and

d2E(us)
ds2

= −
∫
B

2∑
i,j=1

aijR(
∂F

∂s
,
∂F

∂xi
,
∂F

∂xj
,
∂F

∂s
)

+
∫
B

2∑
i,j=1

aijg

(
∇ ∂

∂xi

∂us
∂s

,∇ ∂
∂xj

∂us
∂s

)
,

(15)

where R is the curvature of H2
+.

Proof. First, we suppose that F is C∞. By definition,

E(us) =
1
2

∫
B

2∑
i,j=1

aij(x)g(
∂us
∂xi

,
∂us
∂xj

)dx.

Differentiating under the integral sign and using the symmetry of the Riemannian
connection, we obtain

dE(us)
ds

=
∫
B

2∑
i,j=1

aij(x)g
(
∇ ∂

∂s

∂us
∂xi

,
∂us
∂xj

)
dx

=
∫
B

2∑
i,j=1

aij(x)g
(
∇ ∂

∂xi

∂us
∂s

,
∂us
∂xj

)
dx

= −
∫
B

g

∂us
∂s

,∇ ∂
∂xi

(
2∑

i,j=1

aij
∂us
∂xj

)

 dx,
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since ∂F
∂s = 0 on ∂B. Therefore, we obtain (14). Taking the derivative of (14), we

have

d2E(us)
ds2

= −
∫
B

g

∂us
∂s

,∇ ∂
∂s
∇ ∂

∂xi

(
2∑

i,j=1

aij
∂us
∂xj

)

 dx

= −
∫
B

2∑
i,j=1

aijR(
∂F

∂s
,
∂F

∂xi
,
∂F

∂xj
,
∂F

∂s
)

−
∫
B

g

∂us
∂s

,∇ ∂
∂xi

∇ ∂
∂s

(
2∑

i,j=1

aij
∂us
∂xj

)

 dx

= −
∫
B

2∑
i,j=1

aijR(
∂F

∂s
,
∂F

∂xi
,
∂F

∂xj
,
∂F

∂s
)

+
∫
B

2∑
i,j=1

aijg

(
∇ ∂

∂xi

∂us
∂s

,∇ ∂
∂xj

∂us
∂s

)
dx.

Thus, we establish (15). By density, we finish the proof.

Proof of Proposition 2. Suppose that u1 ∈ C2
l (B̄,H2

+) is another solution for equa-
tion (5). Putting s = 0 and s = 1 in (14), we obtain

dE(us)
ds

|s=0,1 = 0.

On the other hand, we have

d2E(us)
ds2

≥ 0

since −R(
∂F

∂s
, ·, ·, ∂F

∂s
) is a positive quadratic form, that is, E(us) is convex. Thus,

E(us) ≡ E(u0). Thanks to formula (15), we infer that ∂F
∂s ≡ 0. This contradiction

completes the proof.

4. The diffeomorphism property

Let l : ∂B −→ H2 ∩ {x3 = α1, α1 > 1} be a C2 diffeomorphism with deg(l, ∂B)
= 1. We will prove the following result.

Proposition 3. Under the above assumptions, the unique minimizer u of E is a
diffeomorphism and rank(∇u(x)) = 2 for all x ∈ B̄.

The proof here is the same as in [3]. To prove this fact, we will consider the
following energy functional:

Et(u) =
1
2

∫
B

2∑
i,j=1

[
(1 − t)δij + taij(x)

]
g

(
∂u

∂xi
,
∂u

∂xj

)
dx.(16)

Let It = infv∈H1
l (B,H2

+)Et(v). Denote ut ∈ H1
l (B,H2

+) the unique minimum of Et
in H1

l (B,H2
+) given by Propositions 1 and 2, then ut satisfies:

2∑
i,j=1

∂

∂xi

([
(1− t)δij + taij(x)

] ∂ut
∂xj

)
+ λtu

t = 0, in B,

ut = l, on ∂B,

(17)
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where λt = −
2∑

i,j=1

[
(1− t)δij + taij(x)

]
g

(
∂ut

∂xi
(x),

∂ut

∂xj
(x)
)

. ut is in C2(B̄,H2
+) by

Proposition 1. Define a mapping F∗:

F∗ : [0, 1] −→ C2(B̄,H2
+),

t 7−→ ut.

We need also several technical lemmas.

Lemma 2. With the above notations, we have rank(∇ut(x)) = 2, for any t ∈ [0, 1]
and x ∈ ∂B.

The proof is the same as that of Lemma 5 in [3].

Lemma 3. F∗ is continuous.

Proof. First we notice that It is continuous. Indeed, for some fixed v ∈ H1
l (B,H2

+)

0 ≤ It ≤
1
2

4 +
2∑

i,j=1

‖aij‖C0

 ‖∇v‖2L2 ≤ C, ∀0 ≤ t ≤ 1.

On the other hand, we have that for any 0 ≤ t, t′ ≤ 1

|It − It′ | ≤
1

min(1, α)
|t− t′|

4 +
2∑

i,j=1

‖aij‖C0

max{It, It′}.

Then the claim yields. Now let t be fixed. Assume that {tn}n∈N is a sequence con-
verging to t. It follows from Proposition 1 that {utn}n∈N is compact in C2(B̄,H2

+).
Modulo a subsequence, we can assume that utn −→ u in C2(B̄,H2

+) for u ∈
C2(B̄,H2

+) ∩H1
l (B,H2

+). Clearly,

Et(u) = It.

Now by Proposition 2, we terminate the proof.

Proof of Proposition 3. We define a set

T1 = {t ∈ [0, 1], ut is a diffeomorphism}.

Step 0 : T1 is not empty.
In view of Theorem 5.1.1 in [9] (see also [3], Lemma 7), we have 0 ∈ T1.
Step 1 : T1 is open.
Let t1 ∈ T1. Applying Lemmas 2 and 3, we get

∃ τ1 > 0, s.t. ∀ t ∈ ]t1 − τ1, t1 + τ1[ ∩ [0, 1] =⇒ rank(∇ut(x)) = 2, ∀x ∈ B̄.

Now the claim follows from a result in [14] (see also [3], Lemma 6).
Step 2 : T1 is also closed.
Let {tn}n∈N be a sequence converging to t. Assume that utn are diffeomorphisms,

∀ n ∈ N. We suppose that

∃ x0 ∈ B̄, s.t. det(∇(P ◦ ut)(x0)) = 0.
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Denote v = P ◦ ut and choose θ ∈ R such that

((∇v1) cos θ + (∇v2) sin θ)(x0) = 0.

Define ω∗ = ω1 cos θ + ω2 sin θ for all continous functions ω : B −→ R2. Thanks to
the results of Hartman and Wintner [7], Theorems 1 and 2 (see also [3], Lemma 9),
there exists some n1 ≥ 1 and a ∈ C∗ such that

∂zv∗(z) = a(z − z0)n1 + o(| z − z0 |n1)

where z0 = (x0)1 + i(x0)2. Therefore, there exists r0 > 0 and some n sufficiently
large such that

deg(∂z(P ◦ utn)∗|∂B(z0,r0), 0) = deg(∂zv∗|∂B(z0,r0), 0) = n1 ≥ 1.

However, by property of degree, this contradicts that utn is a diffeomorphism.
Hence, Proposition 3 is proved.

5. Proof of the Theorem

Now, with the above results and preceding method, we can prove our main result.
Note first that g( ∂G∂xi , u(x)) = 0 for i = 1, 2. That is, u(x) is the normal vector on
G(B) at point G(x) for all x ∈ B̄. On the other hand, we have

g(u× ux1 , u× ux1) = (u3)2(u2
x1

)2 + (u2)2(u3
x1

)2 − 2u2u2
x1
u3u3

x1
+ (u3)2(u1

x1
)2

+(u1)2(u3
x1

)2 − 2u1u1
x1
u3u3

x1
− (u1)2(u2

x1
)2 − (u2)2(u1

x1
)2

+2u2u2
x1
u1u1

x1

= (u3)2((u2
x1

)2 + (u1
x1

)2) + (u2)2((u3
x1

)2 − (u1
x1

)2)

+(u1)2((u3
x1

)2 − (u2
x1

)2)− 2(u3)2(u3
x1

)2 + 2u2u2
x1
u1u1

x1
,

since g(u, ux1) = 0 (here subscripts denote partial differentiation with respect to
coordinates). With help of the equalities u3 =

√
1 + (u1)2 + (u2)2 and (u3

x1
)2 =

(u1u1
x1

+ u2u2
x1

)2

1 + (u1)2 + (u2)2
, we deduce

g(u× ux1 , u× ux1) = g(ux1, ux1).

Replacing x1 by x2 and x1 + x2, implies

g(u× ux2 , u× ux2) = g(ux2 , ux2) and g(u× ux1 , u× ux2) = g(ux1 , ux2).

Therefore, we conclude that G is an immersion and that the metric induced on
G(B) is Riemannian.

Now we will calculate the curvature ofG(B). Denote D (resp. ∇) the Levi-Civita
connection on R2,1 (resp. G(B)) and R the curvature. Obviously, we have

∇XY = DXY + g(DXY, u)u,
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where X and Y are vector fields on G(B). So, this implies

R

(
∂G

∂x1
,
∂G

∂x2
,
∂G

∂x2
,
∂G

∂x1

)
= g

(
∇ ∂

∂x1
∇ ∂

∂x2

∂G

∂x2
−∇ ∂

∂x2
∇ ∂

∂x1

∂G

∂x2
,
∂G

∂x1

)
= g

(
D ∂

∂x1
∇ ∂

∂x2

∂G

∂x2
−D ∂

∂x2
∇ ∂

∂x1

∂G

∂x2
,
∂G

∂x1

)
= g

(
D ∂

∂x2

∂G

∂x2
, u

)
g

(
D ∂

∂x1
u,
∂G

∂x1

)
−g
(
D ∂

∂x1

∂G

∂x2
, u

)
g

(
D ∂

∂x2
u,
∂G

∂x1

)
= −g

(
D ∂

∂x2
u,
∂G

∂x2

)
g

(
D ∂

∂x1
u,
∂G

∂x1

)
+g
(
D ∂

∂x1
u,
∂G

∂x2

)
g

(
D ∂

∂x2
u,
∂G

∂x1

)
= (−a11a22 + a2

12)g(u× ux1, ux2)2,

since g(u× uxi, uxi) = 0 for i = 1, 2. On the other hand,

g(Gx1 , Gx1)g(Gx2 , Gx2)− g(Gx1 , Gx2)2

= g(
2∑
j=1

a2ju× uxj ,
2∑
k=1

a2ku× uxk)g(
2∑
j=1

a1ju× uxj ,
2∑

k=1

a1ku× uxk)

−g(
2∑
j=1

a1ju× uxj ,
2∑

k=1

a2ku× uxk)2

= g(
2∑
j=1

a2juxj ,

2∑
k=1

a2kuxk)g(
2∑
j=1

a1juxj ,

2∑
k=1

a1kuxk)−g(
2∑
j=1

a1juxj ,

2∑
k=1

a2kuxk)2

= det(aij)2(g(ux1 , ux1)g(ux2 , ux2)− g(ux1 , ux2)2)

= −det(aij)2g(ux1 × ux2 , ux1 × ux2)

= det(aij)2g(u× ux1 , ux2)2.

Hence, K(G(x)) = −det(aij(x))−1.
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