IMMERSED SURFACES OF PRESCRIBED GAUSS CURVATURE INTO MINKOWSKI SPACE

YUXIN GE

(Communicated by Bennett Chow)

Abstract. Given a positive real valued function \(k(x) \) on the disc, we will immerse the disc into three dimensional Minkowski space in such a way that Gauss curvature at the image point of \(x \) is \(-k(x)\). Our approach lies on the construction of Gauss map of surfaces.

1. Introduction

The classical Minkowski problem is an embedding problem of differential geometry. This problem is the following: Given a positive function \(K(u) \) defined on the unit sphere, does there exist a closed convex surface in \(\mathbb{R}^3 \) having \(K(u) \) as its Gauss curvature at the point on the surface where the inner normal is \(u \)? In [11], Lewy has shown the existence of such a surface, under the condition that the function \(K(u) \) is analytic. Later, by using a similar procedure, Nirenberg [13] published a paper in which he solved the Minkowski problem under the assumption that the function \(K(u) \) possesses partial derivatives on the sphere up to second order. In [3], the author considers an analogous problem by using an approach, suggested in [8]: Given a positive real valued function \(k(x) \) on the disc, we immerse the disc in \(\mathbb{R}^3 \) in such a way that Gauss curvature at the image point of \(x \) is \(k(x) \). In this paper, we continue exploiting this method to immerse the disc into three dimensional Minkowski space. Namely we propose and use a method for constructing immersions of surfaces in the Minkowski space \(\mathbb{R}^{2,1} \) by prescribing the Gauss curvature to be a negative function of the variable \(x \) in the surface. Notice that in [3] we had an analogous construction for surfaces in the Euclidean space but with a positive Gauss curvature.

Let \(B = \{ x \in \mathbb{R}^2, \ | \ x \ | < 1 \} \) be a disc in \(\mathbb{R}^2 \). Let \(\mathbb{R}^{2,1} \) be three dimensional Minkowski space with the standard metric \(g = (dx_1)^2 + (dx_2)^2 - (dx_3)^2 \). Let \(\mathbb{H}_2 = \{ x \in \mathbb{R}^3, \ g(x,x) = -1 \} \) be the unit hyperboloid of two sheets and let \(\mathbb{H}_2^+ = \{ x \in \mathbb{H}_2, \ x_3 > 0 \} \) be the upper sheet contained in the half-space \(\{ x_3 > 0 \} \).

Let \(l: \partial B \rightarrow \mathbb{H}_2^+ \) be a prescribed \(C^{2,\gamma} \) mapping with \(\gamma > 0 \). We consider the space \(H^1(B, \mathbb{H}_2^+) \) of functions \(u \) in \(H^1(B, \mathbb{R}^3) \) satisfying that \(u \in \mathbb{H}_2^+ \) a.e. and \(u = l \).
on \(\partial B \). We define on \(H^1_1(B, \mathbb{H}^2_1) \) the following energy functional \(E \):

\[
E(u) = \frac{1}{2} \int_B \sum_{i,j=1}^{2} a_{ij}(x) \left(\frac{\partial u}{\partial x_i}, \frac{\partial u}{\partial x_j} \right) dx,
\]

where \(a_{ij}(x) \) satisfy the following conditions:

1. \(\exists \alpha > 0, \text{ such that } a_{ij}(x)\xi^i\xi^j \geq \alpha |\xi|^2, \quad \forall x \in B, \forall \xi \in \mathbb{R}^2; \)
2. \(a_{ij}(x) \in C^{1,\gamma}(B, \mathbb{R}), \quad \forall 1 \leq i, j \leq 2; \)
3. \(a_{ij} = a_{ji}, \quad \forall 1 \leq i, j \leq 2. \)

Here, it is easy to check that the critical points of \(E \) satisfy in the sense of distributions the following Euler equation:

\[
\begin{cases}
\sum_{i,j=1}^{2} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right) + \lambda u = 0, & \text{in } B, \\
u = 1, & \text{on } \partial B,
\end{cases}
\]

where \(\lambda = -\sum_{i,j=1}^{2} a_{ij}(x)g \left(\frac{\partial u}{\partial x_i}(x), \frac{\partial u}{\partial x_j}(x) \right). \)

Notice that \(\lambda < 0 \). We deduce from (5) the following equality:

\[
\sum_{i=1}^{2} \frac{\partial}{\partial x_i} \left(u \times \sum_{j=1}^{2} a_{ij}(x) \frac{\partial u}{\partial x_j} \right) = 0,
\]

where \(\xi \times \eta = (\xi_2\eta_3 - \xi_3\eta_2, \xi_3\eta_1 - \xi_1\eta_3, \xi_1\eta_2 - \xi_2\eta_1) \) for all \(\xi, \eta \in \mathbb{R}^{2,1} \) is vectorial product in \(\mathbb{R}^{2,1} \). Assume that \(u \) is an immersion. Thus, we obtain a new immersion \(G \) from \(B \) to \(\mathbb{R}^{2,1} \) satisfying

\[
\frac{\partial G}{\partial x_2} = \sum_{j=1}^{2} a_{1j}(x)u \times \frac{\partial u}{\partial x_j}, \quad \frac{\partial G}{\partial x_1} = -\sum_{j=1}^{2} a_{2j}(x)u \times \frac{\partial u}{\partial x_j}.
\]

Our aim here is to prove that \(G \) has the prescribed Gauss curvature. More precisely, we will show the following theorem.

Theorem. Under the above assumptions, the metric induced by \(g \) on \(G(B) \) is Riemannian. Moreover, \(G(B) \) has the Gauss curvature equal to \(-\det(a_{ij})^{-1}\) at each point \(G(x) \).

This paper is organized as follows. We first prove that there exists a solution of (5) in the \(C^{2,\gamma} \) norm. Then, we show that the solution \(u \) is unique. By the same strategy as in \([9]\), we deduce that \(u \) is a diffeomorphism. Hence, using the above approach, we will establish our result.

2. Existence and regularity

Let us first give the existence and regularity results.

Proposition 1. Under the above hypothesis, there exists a minimum \(u \in H^1_1(B, H^2_1) \) of \(E \) which satisfies (5). Furthermore, one has the estimate:

\[
\|u\|_{C^{2,\gamma}} \leq C_1(\|u\|_{H^1} + \|l\|_{C^{2,\gamma}}),
\]

where \(C_1 \) is a constant depending only on \(\alpha, \gamma \) and \(\|a_{ij}\|_{C^{1,\gamma}} \).

\[\square\]
Remark. Notice that the metric induced by g on \mathbb{H}^2_+ is Riemannian. So it is natural for us to look for the minimum of E.

Proof. We will make use of the stereographic projection:

$$P : \mathbb{H}^2_+ \longrightarrow B,$$

$$(x, y, z) \longrightarrow \left(\frac{x}{1 + z}, \frac{y}{1 + z}\right).$$

With these stereographic coordinates, we can write the functional E as follows:

$$E(v) = 2 \int_B \sum_{i,j=1}^2 a_{ij}(x) \left(\frac{\partial v}{\partial x_i}, \frac{\partial v}{\partial x_j}\right) dx,$$

where $v \in H^1_b(B, \mathbb{R}^2)$ with $h = P \circ l$ and \langle , \rangle denotes the standard Euclidean inner product. Assume that $|h| \leq r$ with some $r < 1$. Let $f : \mathbb{R}^+ \longrightarrow \mathbb{R}$ be a decreasing continuous map satisfying

$$f(z) = \begin{cases}
\frac{1}{(1 - z^2)^2}, & \text{if } 0 \leq z \leq r; \\
\frac{1}{(1 - r^2)^2}, & \text{if } z \geq r.
\end{cases}$$

Consider the second energy functional E_1

$$E_1(v) = 2 \int_B \sum_{i,j=1}^2 a_{ij}(x) f(|v|) \left(\frac{\partial v}{\partial x_i}, \frac{\partial v}{\partial x_j}\right) dx,$$

where $v \in H^1_b(B, \mathbb{R}^2)$. Obviously,

$$E_1(v) \leq E(v).$$

By coerciveness and lower semi-continuity of E_1 (see [5] and [15]), it is clear that there exists $w \in H^1_b(B, \mathbb{R}^2)$ minimizing E_1. We define \tilde{w} by

$$\tilde{w}_i(x) = \begin{cases}
w_i(x), & \text{if } |w_i(x)| \leq r; \\
r, & \text{if } w_i(x) \geq r; \\
-r, & \text{if } w_i(x) \leq -r,
\end{cases}$$

for $i = 1, 2$. Obviously, $\tilde{w} \in H^1_b(B, \mathbb{R}^2)$ and $E_1(\tilde{w}) \leq E_1(w)$. Thus, $|w_i(x)| \leq r$ a.e. for $i = 1, 2$. Replacing w by $(w_1 \cos \theta - w_2 \sin \theta, w_1 \sin \theta + w_2 \cos \theta)$ for any $\theta \in \mathbb{R}$, we deduce that $|w(x)| \leq r$ a.e. So w is also a minimizer of E. Thanks to a result due to Jost and Meier [10], Lemma 1 (see also [3], Lemma 1), we conclude that there exists $q > 2$ such that

$$\|w\|_{W^{1,\alpha}(B, \mathbb{R}^2)} \leq C_4(\|w\|_{H^1(B, \mathbb{R}^2)} + \|h\|_{C^1}),$$

where the constants C_4 and q depend only on α and $\|a_{ij}\|_{C^1}$. Now we consider $u = P^{-1} \circ w$ and return to equation (5). From L^p-estimates and using Sobolev embedding theorem, we have

$$\|u\|_{W^{1,2+\frac{2r}{q-2}}} \leq C\|u\|_{W^{2,\frac{q}{2}}} \leq C(\|u\|_{H^1} + \|l\|_{C^2}),$$

if $q < 4$.

Iterating the above procedure and using Schauder estimates, we complete the proof (cf. [5]).
3. Uniqueness

In this part, our main result is the following:

Proposition 2. The solution for equation (5) in $C^2(\tilde{B}, \mathbb{H}^2_+)$ is unique.

Remark. This result and the proof we propose generalize an analogous result for harmonic maps due independently to [6] and [1].

Denote ∇ the Levi-Civita connection on \mathbb{H}^2_+ for the metric g. Let $u_1 \in C^2(\tilde{B}, \mathbb{H}^2_+)$ be a map with the same boundary condition as u. For any $x \in \tilde{B}$, let $\gamma_x(s)$ denote the unique geodesic arc in \mathbb{H}^2_+ parametrized with constant speed (depending on x) for $s \in [0,1]$, and connecting $u(x)$ with $u_1(x)$. The uniqueness of $\gamma_x(s)$ follows from \mathbb{H}^2_+ having nonpositive curvature and simply connected. Define a C^2 map $F: \tilde{B} \times [0,1] \rightarrow \mathbb{H}^2_+$ by $F(x,s) = \gamma_x(s)$ and let $u_s \in C^2(\tilde{B}, \mathbb{H}^2_+)$ be given by $u_s(x) = F(x,s)$. Then, F is a deformation of u. We will write the first and second variations of the energy E (see [2]).

Lemma 1. Under the above hypothesis, we have the following formulas:

\begin{equation}
\frac{dE(u_s)}{ds} = -\int_{\tilde{B}} \frac{1}{2} \sum_{i,j=1}^{2} a_{ij} \left(\frac{\partial u_s}{\partial x_i} \cdot \frac{\partial u_s}{\partial x_j} \right) \nabla_{\frac{\partial}{\partial s}} (2 \sum_{i,j=1}^{2} a_{ij} \frac{\partial u_s}{\partial x_j})
\end{equation}

\begin{equation}
\frac{d^2E(u_s)}{ds^2} = -\int_{\tilde{B}} \sum_{i,j=1}^{2} a_{ij} R \left(\frac{\partial F}{\partial s} \cdot \frac{\partial F}{\partial x_i} \cdot \frac{\partial F}{\partial x_j} \cdot \frac{\partial F}{\partial s} \right) + \int_{\tilde{B}} \sum_{i,j=1}^{2} a_{ij} g \left(\nabla_{\frac{\partial}{\partial s}} \frac{\partial u_s}{\partial x_i}, \nabla_{\frac{\partial}{\partial s}} \frac{\partial u_s}{\partial x_j} \right),
\end{equation}

where R is the curvature of \mathbb{H}^2_+.

Proof. First, we suppose that F is C^∞. By definition,

$$E(u_s) = \frac{1}{2} \int_{\tilde{B}} \sum_{i,j=1}^{2} a_{ij}(x) g \left(\frac{\partial u_s}{\partial x_i}, \frac{\partial u_s}{\partial x_j} \right) dx.$$

Differentiating under the integral sign and using the symmetry of the Riemannian connection, we obtain

\begin{align*}
\frac{dE(u_s)}{ds} &= \int_{\tilde{B}} \sum_{i,j=1}^{2} a_{ij}(x) g \left(\nabla_{\frac{\partial}{\partial s}} \frac{\partial u_s}{\partial x_i}, \frac{\partial u_s}{\partial x_j} \right) dx \\
&= \int_{\tilde{B}} \sum_{i,j=1}^{2} a_{ij}(x) g \left(\frac{\partial u_s}{\partial s}, \frac{\partial u_s}{\partial x_j} \right) dx \\
&= -\int_{\tilde{B}} g \left(\frac{\partial u_s}{\partial s}, \nabla_{\frac{\partial}{\partial s}} (2 \sum_{i,j=1}^{2} a_{ij} \frac{\partial u_s}{\partial x_j}) \right) dx,
\end{align*}
since \(\frac{\partial F}{\partial s} = 0 \) on \(\partial B \). Therefore, we obtain (14). Taking the derivative of (14), we have

\[
\frac{d^2 E(u_s)}{ds^2} = -\int_B g \left(\frac{\partial u_s}{\partial s}, \nabla \frac{\partial u_s}{\partial s}, \sum_{i,j=1}^2 a_{ij} \frac{\partial u_s}{\partial x_j} \right) dx
\]

Thus, we establish (15). By density, we finish the proof.

Proof of Proposition 2. Suppose that \(u_1 \in C^2(\overline{B}, \mathbb{H}^2) \) is another solution for equation (5). Putting \(s = 0 \) and \(s = 1 \) in (14), we obtain

\[
\frac{dE(u_s)}{ds} \bigg|_{s=0,1} = 0.
\]

On the other hand, we have

\[
\frac{d^2 E(u_s)}{ds^2} \geq 0
\]

since \(-R(\frac{\partial F}{\partial s}, \ldots, \frac{\partial F}{\partial s})\) is a positive quadratic form, that is, \(E(u_s) \) is convex. Thus, \(E(u_s) \equiv E(u_0) \). Thanks to formula (15), we infer that \(\frac{\partial F}{\partial s} \equiv 0 \). This contradiction completes the proof.

4. The Diffeomorphism Property

Let \(l : \partial B \rightarrow \mathbb{H}^2 \cap \{ x_3 = \alpha_1, \alpha_1 > 1 \} \) be a \(C^2 \) diffeomorphism with \(\text{deg}(l, \partial B) = 1 \). We will prove the following result.

Proposition 3. Under the above assumptions, the unique minimizer \(u \) of \(E \) is a diffeomorphism and \(\text{rank}(\nabla u(x)) = 2 \) for all \(x \in \overline{B} \).

The proof here is the same as in [3]. To prove this fact, we will consider the following energy functional:

\[
E_t(u) = \frac{1}{2} \int_B \sum_{i,j=1}^2 [(1-t)\delta_{ij} + ta_{ij}(x)] g \left(\frac{\partial u}{\partial x_i}, \frac{\partial u}{\partial x_j} \right) dx.
\]

Let \(I_t = \inf_{v \in H^1_t(B, \mathbb{H}^2_+)} E_t(v) \). Denote \(u^t \in H^1_t(B, \mathbb{H}^2_+) \) the unique minimum of \(E_t \) in \(H^1_t(B, \mathbb{H}^2_+) \) given by Propositions 1 and 2, then \(u^t \) satisfies:

\[
\left\{ \begin{array}{l}
\sum_{i,j=1}^2 \frac{\partial}{\partial x_i} \left([(1-t)\delta_{ij} + ta_{ij}(x)] \frac{\partial u^t}{\partial x_j} \right) + \lambda_t u^t = 0, \quad \text{in } B, \\
u^t = l, \quad \text{on } \partial B,
\end{array} \right.
\]
where \(\lambda_t = - \sum_{i,j=1}^2 \left[(1-t) \delta_{ij} + ta_{ij}(x) \right] g \left(\frac{\partial u^t}{\partial x_i}(x), \frac{\partial u^t}{\partial x_j}(x) \right) \). \(u^t \) is in \(C^2(\overline{B}, \mathbb{R}^2_+) \) by Proposition 1. Define a mapping \(F_* : [0,1] \to C^2(\overline{B}, \mathbb{R}^2_+), t \mapsto u^t \).

We need also several technical lemmas.

Lemma 2. With the above notations, we have \(\text{rank}(\nabla u^t(x)) = 2 \), for any \(t \in [0,1] \) and \(x \in \partial B \).

The proof is the same as that of Lemma 5 in [3].

Lemma 3. \(F_* \) is continuous.

Proof. First we notice that \(I_t \) is continuous. Indeed, for some fixed \(v \in H^1_0(B, \mathbb{R}^2_+) \)

\[
0 \leq I_t \leq \frac{1}{2} \left(4 + \sum_{i,j=1}^2 \| a_{ij} \|_{C^0} \right) \| \nabla v \|_{L^2}^2 \leq C, \quad \forall 0 \leq t \leq 1.
\]

On the other hand, we have that for any \(0 \leq t, t' \leq 1 \)

\[
|I_t - I_{t'}| \leq \frac{1}{\min(1, \alpha)} |t - t'| \left(4 + \sum_{i,j=1}^2 \| a_{ij} \|_{C^0} \right) \max\{I_t, I_{t'}\}.
\]

Then the claim yields. Now let \(t \) be fixed. Assume that \(\{ t_n \}_{n \in \mathbb{N}} \) is a sequence converging to \(t \). It follows from Proposition 1 that \(\{ u^{t_n} \}_{n \in \mathbb{N}} \) is compact in \(C^2(\overline{B}, \mathbb{R}^2_+) \). Modulo a subsequence, we can assume that \(u^{t_n} \to u \) in \(C^2(\overline{B}, \mathbb{R}^2_+) \cap H^1(B, \mathbb{R}^2_+) \). Clearly,

\[
E_t(u) = I_t.
\]

Now by Proposition 2, we terminate the proof.

Proof of Proposition 3. We define a set

\[
T_1 = \{ t \in [0,1], \; u^t \text{ is a diffeomorphism} \}.
\]

Step 0 : \(T_1 \) is not empty.

In view of Theorem 5.1.1 in [9] (see also [3], Lemma 7), we have \(0 \in T_1 \).

Step 1 : \(T_1 \) is open.

Let \(t_1 \in T_1 \). Applying Lemmas 2 and 3, we get

\[
\exists \tau_1 > 0, \text{ s.t. } \forall t \in [t_1 - \tau_1, t_1 + \tau_1] \cap [0,1] \Rightarrow \text{rank}(\nabla u^t(x)) = 2, \quad \forall x \in \overline{B}.
\]

Now the claim follows from a result in [14] (see also [3], Lemma 6).

Step 2 : \(T_1 \) is also closed.

Let \(\{ t_n \}_{n \in \mathbb{N}} \) be a sequence converging to \(t \). Assume that \(u^{t_n} \) are diffeomorphisms, \(\forall n \in \mathbb{N} \). We suppose that

\[
\exists x_0 \in \overline{B}, \text{ s.t. } \det(\nabla(P \circ u^t)(x_0)) = 0.
\]
Denote \(v = P \circ u^t \) and choose \(\theta \in \mathbb{R} \) such that
\[
((\nabla v_1) \cos \theta + (\nabla v_2) \sin \theta)(x_0) = 0.
\]
Define \(\omega_* = \omega_1 \cos \theta + \omega_2 \sin \theta \) for all continuous functions \(\omega : B \to \mathbb{R}^2 \). Thanks to the results of Hartman and Wintner \([7]\), Theorems 1 and 2 (see also \([3]\), Lemma 9), there exists some \(n_1 \geq 1 \) and \(a \in \mathbb{C}^* \) such that
\[
\partial_z \omega_*(z) = a(z - z_0)^{n_1} + o(|z - z_0|^{n_1})
\]
where \(z_0 = (x_0)_1 + i(x_0)_2 \). Therefore, there exists \(r_0 > 0 \) and some \(n \) sufficiently large such that
\[
\deg(\partial_z (P \circ u^{tn})|_{\partial B(z_0, r_0)}, 0) = \deg(\partial_z \omega_*(B(z_0, r_0)), 0) = n_1 \geq 1.
\]
However, by property of degree, this contradicts that \(u^{tn} \) is a diffeomorphism. Hence, Proposition 3 is proved.

5. Proof of the Theorem

Now, with the above results and preceding method, we can prove our main result. Note first that \(g(\frac{\partial G}{\partial u^i}, u(x)) = 0 \) for \(i = 1, 2 \). That is, \(u(x) \) is the normal vector on \(G(B) \) at point \(G(x) \) for all \(x \in B \). On the other hand, we have
\[
g(u \times u_{x_1}, u \times u_{x_1}) = (u^3)^2(u_{x_1}^2)^2 + (u^2)^2(u_{x_2}^3)^2 - 2u^2u_{x_1}^2u_{x_2}^2u_{x_3}^3 + (u^3)^2(u_{x_1}^2)^2
\]
\[
+ (u^1)^2(u_{x_1}^3)^2 - 2u^1u_{x_1}^1u_{x_2}^3u_{x_3}^3 - (u^1)^2(u_{x_2}^2)^2 - (u^2)^2(u_{x_2}^1)^2
\]
\[
+ 2u^1u_{x_1}^2u_{x_2}^2u_{x_3}^1u_{x_1}^1,
\]
since \(g(u, u_{x_1}) = 0 \) (here subscripts denote partial differentiation with respect to coordinates). With help of the equalities \(u^3 = \sqrt{1 + (u^1)^2 + (u^2)^2} \) and \((u_{x_1}^3)^2 = \frac{(u_{x_1}^1)^2 + (u_{x_2}^2)^2}{1 + (u^1)^2 + (u^2)^2} \), we deduce
\[
g(u \times u_{x_1}, u \times u_{x_1}) = g(u_{x_1}, u_{x_1}).
\]
Replacing \(x_1 \) by \(x_2 \) and \(x_1 + x_2 \), implies
\[
g(u \times u_{x_2}, u \times u_{x_2}) = g(u_{x_2}, u_{x_2}) \quad \text{and} \quad g(u \times u_{x_1}, u \times u_{x_2}) = g(u_{x_1}, u_{x_2}).
\]
Therefore, we conclude that \(G \) is an immersion and that the metric induced on \(G(B) \) is Riemannian.

Now we will calculate the curvature of \(G(B) \). Denote \(D \) (resp. \(\nabla \)) the Levi-Civita connection on \(\mathbb{R}^{2,1} \) (resp. \(G(B) \)) and \(R \) the curvature. Obviously, we have
\[
\nabla_X Y = D_X Y + g(D_X u, u)u,
\]
where X and Y are vector fields on $G(B)$. So, this implies

$$R \left(\frac{\partial G}{\partial x_1}, \frac{\partial G}{\partial x_2}, \frac{\partial G}{\partial x_2}, \frac{\partial G}{\partial x_1} \right)$$

$$= g \left(\nabla_{\frac{\partial G}{\partial x_1}} \nabla_{\frac{\partial G}{\partial x_2}} - \nabla_{\frac{\partial G}{\partial x_2}} \nabla_{\frac{\partial G}{\partial x_1}} \right)$$

$$= g \left(D_{\frac{\partial G}{\partial x_1}} \nabla_{\frac{\partial G}{\partial x_2}} \nabla_{\frac{\partial G}{\partial x_2}} - D_{\frac{\partial G}{\partial x_2}} \nabla_{\frac{\partial G}{\partial x_1}} \nabla_{\frac{\partial G}{\partial x_1}} \right)$$

$$= g \left(D_{\frac{\partial G}{\partial x_1}} \frac{\partial G}{\partial x_2}, u \right) g \left(D_{\frac{\partial G}{\partial x_2}} \frac{\partial G}{\partial x_2}, u \right) - g \left(D_{\frac{\partial G}{\partial x_2}} \frac{\partial G}{\partial x_1}, u \right) g \left(D_{\frac{\partial G}{\partial x_1}} \frac{\partial G}{\partial x_1}, u \right)$$

$$= -g \left(D_{\frac{\partial G}{\partial x_1}} u, \frac{\partial G}{\partial x_2} \right) g \left(D_{\frac{\partial G}{\partial x_2}} u, \frac{\partial G}{\partial x_2} \right) + g \left(D_{\frac{\partial G}{\partial x_2}} u, \frac{\partial G}{\partial x_1} \right) g \left(D_{\frac{\partial G}{\partial x_1}} u, \frac{\partial G}{\partial x_1} \right)$$

$$= (-a_{11}a_{22} + a_{12}^2)g(u \times u_{x_1}, u_{x_2})^2,$$

since $g(u \times u_{x_i}, u_{x_i}) = 0$ for $i = 1, 2$. On the other hand,

$$g(G_{x_1}, G_{x_1})g(G_{x_2}, G_{x_2}) - g(G_{x_1}, G_{x_2})^2$$

$$= g \left(\sum_{j=1}^{2} a_{2j} u \times u_{x_j}, \sum_{k=1}^{2} a_{2k} u \times u_{x_k} \right) g \left(\sum_{j=1}^{2} a_{1j} u \times u_{x_j}, \sum_{k=1}^{2} a_{1k} u \times u_{x_k} \right)$$

$$- g \left(\sum_{j=1}^{2} a_{1j} u \times u_{x_j}, \sum_{k=1}^{2} a_{2k} u \times u_{x_k} \right)^2$$

$$= g \left(\sum_{j=1}^{2} a_{2j} u_{x_j}, \sum_{k=1}^{2} a_{2k} u_{x_k} \right) g \left(\sum_{j=1}^{2} a_{1j} u_{x_j}, \sum_{k=1}^{2} a_{1k} u_{x_k} \right) - g \left(\sum_{j=1}^{2} a_{1j} u_{x_j}, \sum_{k=1}^{2} a_{2k} u_{x_k} \right)^2$$

$$= \det(a_{ij})^2(g(u_{x_1}, u_{x_1})g(u_{x_2}, u_{x_2}) - g(u_{x_1}, u_{x_2})^2)$$

$$= -\det(a_{ij})^2 g(u_{x_1} \times u_{x_2}, u_{x_1} \times u_{x_2})$$

$$= \det(a_{ij})^2 g(u \times u_{x_1}, u_{x_2})^2.$$

Hence, $K(G(x)) = -\det(a_{ij}(x))^{-1}$. \hfill \square

References

DÉPARTEMENT DE MATHEMATIQUES, FACULTÉ DE SCIENCES ET TECHNOLOGIE, UNIVERSITÉ PARIS XII-VAL DE MARNE, 61 AVENUE DU GÉNÉRAL DE GAULLE, 94010 Créteil Cedex, FRANCE

C.M.L.A., E.N.S DE CACHAN, 61, AVENUE DU PRÉSIDENT WILSON, 94235 CACHAN CEDEX, FRANCE

E-mail address: ge@cmla.ens-cachan.fr