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LINEAR DISCRETE OPERATORS ON THE DISK ALGEBRA

IVAN V. IVANOV AND BORIS SHEKHTMAN

(Communicated by Dale Alspach)

Abstract. Let A be the disk algebra. In this paper we address the follow-
ing question: Under what conditions on the points zk,n ∈ D do there exist
operators Ln : A → A such that

Lnf =

mn∑
k=1

f(zk,n)lk,n, f, lk,n ∈ A,

and Lnf → f , n→ ∞, for every f ∈ A? Here the convergence is understood
in the sense of sup norm in A. Our first result shows that if zk,n satisfy
Carleson condition, then there exists a function f ∈ A such that Lnf 6→ f ,
n → ∞. This is a non-trivial generalization of results of Somorjai (1980)
and Partington (1997). It also provides a partial converse to a result of Totik
(1984). The second result of this paper shows that if Ln are required to be
projections, then for any choice of zk,n the operators Ln do not converge to
the identity operator. This theorem generalizes the famous theorem of Faber
and implies that the disk algebra does not have an interpolating basis.

1. Introduction

The problem of recovery of a continuous function from its values at a discrete
number of points is well studied in approximation theory. Many forms of linear
operators (cf. Bernstein polynomials, spline interpolation) exist that realize such
recovery. In contrast very little is known about the recovery of functions in the
disk-algebra. In this paper we study the existence of linear operators on the disk-
algebra that recover functions from their values at a discrete number of points in
the closed unit disk D = {z ∈ C, |z| ≤ 1}. The first result in this direction was
done by Somorjai in 1980.

Let T = {z ∈ C, |z| = 1} be the unit circle and A be the disk-algebra, i.e. the
set of all functions f analytic inside and continuous on the boundary of D.

Definition 1. For a given subset Z ⊂ D let R(Z) be the collection of all linear
continuous operators L on A that satisfy:

If f, g ∈ A and f|Z = g|Z , then Lf = Lg.(1)

Theorem 1 ([So]). Let {Zn}∞n=1 be an arbitrary sequence of finite subsets of the
unit circle T. Let Ln ∈ R(Zn). Then there exists a function f in the disk-algebra
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A such that

Lnf 6→ f, n→∞.(2)

In 1984 Totik showed that Somorjai’s Theorem is not valid when the sets Zn are
chosen to be inside the open unit disk Do. More precisely,

Theorem 2 ([To]). Let {Zn} ⊂ Do satisfy∑
z∈Zn

(1− |z|)→∞, as n→∞.(3)

Then there exist Ln ∈ R(Zn) such that

Lnf → f, n→∞ for all f ∈ A.(4)

The necessary and sufficient conditions on the sets Zn that guarantee the ex-
istence of operators Ln ∈ R(Zn) satisfying (4) is not known. In this paper we
prove

Theorem 3. Let {Zn}n>0 satisfy the uniform Carleson condition (cf. Definition
6). Then for every sequence Ln ∈ R(Zn) there is a function f ∈ A such that
Lnf 6→ f as n→∞.

Hence condition (3) is very close to being necessary and sufficient. In section 3
we use this theorem to prove a surprising

Theorem 4. Let {Zn} ⊂ D be arbitrary finite sets and let Pn ∈ R(Zn) be projec-
tions on A. Then there is a f ∈ A such that Pnf 6→ f , as n→∞.

In particular it implies that A does not possess an interpolating basis (cf. [Bo]),
i.e. a Schauder basis with the property that for every f ∈ A the partial sums from
its basis representation interpolate f at a certain collection of points in the unit
disk D. The proof of Theorem 3 relies heavily on the technique of factorization
of operators borrowed from the Banach space theory. The application of that
technique to the recovery problem was first noted in [Sh] and continued in [ISh].
The proof of Theorem 4 combines the result of Theorem 3 and the analysis of the
projections on A done in [CPS]. We will use the rest of this section to introduce a
few definitions and theorems that are needed in the proofs of Theorems 3 and 4.

Definition 2. A collection {zi,n}mni=1, n = 1, 2, ..., of points in the unit disk D is
called uniformly Blaschke iff there is a constant C such that sn =

∑mn
i=1(1−|zi,n|) ≤

C for all n.

Definition 3. A collection {zi,n}mni=1, n = 1, 2, ..., of points in the unit disk D is
called uniformly non-Blaschke iff sn =

∑mn
i=1(1− |zi,n|)→∞, as n→∞.

Definition 4. Let A : X → X where X is a Banach space, and define

γ∞(A) = inf{‖ U ‖‖ V ‖: U : X → lN∞, V : lN∞ → X,A = UV },
where inf is taken over all positive integers N and all possible factorizations of A.

The observation is:

Proposition 1 ([Sh]). Suppose An : A → A, and γ∞(An) = O(1). Then there is
f ∈ A, such that Anf 6→ f in the topology of A.

In the next definition we introduce the notion of a δ-interpolating collection of
points, e.g. [D].
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Definition 5. The collection Zn = {zi}ni=1 of points in the unit disk D is called
δ-interpolating iff

δ = inf{
n∏

i=1,i6=k
| zk − zi
1− −zizk

|; k = 1, 2, ..., n}.

The following theorem is due to Beurling and it shows how one can use the number
δ from the above definition in order to estimate the norm of a certain interpolating
operator.

Theorem (C). If Zn = {zi}ni=1 is δn-interpolating, n = 1, 2, ..., then there exist
functions {fj}nj=1, fj ∈ A, such that

fj(zi) = δij ;

sup{
n∑
i=1

|fi(z)|; z ∈ D} = O(
1
δn

log(
1
δn

)), as n→∞.(5)

Remark. A simple corollary from this theorem is that the operator Wn : ln∞ →
A;Wn((xi)ni=1) =

∑n
i=1 xifi(z) has its norm

‖Wn‖ = O(
1
δn

log(
1
δn

)) as n→∞.(6)

It is easy to show, using the same method as in [Sh], that if Zn = {zk,n}nk=1 is
δ-interpolating with the same constant δ > 0 for every n = 1, 2, ..., then Theorem
3 holds.

Definition 6. A collection of sets Zn = {zk,n}mnk=1, n = 1, 2, ..., in D is called
uniformly Carleson iff the measures µn that assign a mass 1− |zk,n| to every point
zk,n, k = 1, 2, ..., n, are uniformly Carleson, i.e. there is a constant C such that
µn(Sh(x))

h ≤ C for every n ≥ 1, every h ∈ (0, 1), and every x-real. Here Sh(x) =
{reiθ : 1− h < r < 1, |x− θ| < h

2 }.

The next proposition, e.g. [Ni], gives another characterization of a uniform
Carleson collection of points in the unit disk.

Proposition 2. The sets Zn = {zk,n}mnk=1 ⊂ D, n ≥ 1, are uniformly Carleson if
and only if there exists constants δ > 0 and an integer K > 0 such that

{Zn} =
K⋃
i=1

{Zi,n}(7)

where each Zi,n is δ-interpolating. The constant δ and K can be chosen to depend
on the Carleson constant C only.

2. Proofs

The idea of the proof of Theorem 3 is to assume that the recovery problem
can be solved, and show that it implies γ∞(Ln) = O(1), which together with
Proposition 1 leads to a contradiction.

Proof of Theorem 3. Assume that there is a sequence of linear discrete operators
Ln ∈ R({Zn}) such that Lnf → f for every f ∈ A. Since {Zn} is uniformly
Carleson, we have by Proposition 2 that (7) holds. Moreover, we may assume
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without loss of generality that {Zn} = Tn
⋃K
i=1{Zi,n} where Tn = {ti,n}kni=1 ⊂ T

(the unit circle) for otherwise we can consider Ln as

Lnf =
kn∑
i=1

f(ti,n)0 +
mn∑
k=1

f(zk,n)lk,n, f, lk,n ∈ A.

Next consider the Blaschke product Bn with zeros the points in
⋃K
i=1{Zi,n}, and

let Pn be a projection on A generated by Bn, i.e. kerPn = {f ∈ A : f = Bng, for
some g ∈ A}.

The selection of a proper Pn is based on a simple proposition (cf. [CPS]) saying
that if P1 and P2 are two projections on A with kernels generated by the Blaschke
products B1 and B2 respectively, then one can find a projection P on A with a
kernel generated by B1B2, and the norm satisfying

‖P‖ ≤ ‖P1‖+ ‖P2‖.(8)

Applying this proposition K times we obtain

Pnf = PK,nhK,n +BK,nPK−1,nhK−1,n + ...+BK,n...B2,nP1,nh1,n.(9)

Here Pi,n is a projection on A generated by the points in Zi,n, Bi,n are the Blaschke
products with zeros the points in Zi,n, and the functions hi,n are defined inductively
as follows:
hK,n = f, hK−i,n =

1
BK−i+1,n

(I − PK−i+1,n)(f), i = 1, ...,K − 1.

Now using (8), (9), Beurling’s Theorem and the fact that Zi,n is δ-interpolating
for all i = 1, ...,K, we obtain

‖Pn‖ ≤ C1(10)

where C1 is a constant that depends on K and δ only.
Next consider the operators An : A → lmn+kn

∞ defined as

Anf = (gn(t1,n), ..., gn(tkn,n), h1,n(z1,1,n), ..., hK,n(zK,1,n), ..., hK,n(zK,lK ,n)).

Here gn,f =
1
Bn

(I − Pn)(f), I is the identity operator, and Zi,n = {zi,j,n}lij=1

(i = 1, ...,K, l1 + ...+ lK = mn).
Obviously gn, hi,n ∈ A, i = 1, ...,K, and applying the maximum modulus prin-

ciple for analytic functions and Beurling’s Theorem for Pi,n, i = 1, ...,K, we get
from (10) (recall that |Bn(z)| ≡ 1, |Bi,n(z)| ≡ 1, i = 1, ...,K, on T) an estimate
for the norms of the operators An

‖An‖ ≤ C2.(11)

Here C2 is a constant that depends on K and δ only.
Next introduce operators Vn : lkn+mn

∞ → A:

Vn(v1, ..., vkn , w1,1, ..., w1,l1 , ..., wK,1, ..., wK,lK )

= Bn(z)
kn∑
i=1

vigi,n(z) +
K∑
j=1

{ Bn
B1,n...Bj,n

(z)
lj∑
i=1

wj,ifj,i,n(z)}.

Here fj,i,n(z) ∈ A are such that Pj,nf(z) =
∑lj

i=1 f(zj,i,n)fj,i,n(z), fj,i,n(zj,l,n) =
δil, sup{

∑lj
i=1 |fj,i,n(z)|, z ∈ D} = ‖Pj,n‖, and wi,n’s are selected in such a way (e.g.

[ISh] proof of Theorem 2) that
∑

i ‖gi,n‖ ≤M , where M is an absolute constant.
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From this applying the maximum modulus principle for analytic functions and the
fact that the absolute value of a Blaschke product equals 1 on T we obtain

‖Vn‖ ≤ C3.(12)

Here the constant C3 depends on K,M and δ only. Set Qn = VnAn. By the
construction of the projection Pn we have

Qnf(z1,i,n) = Pnf(z1,i,n) = f(z1,i,n), i = 1, ..., l1,

...

Qnf(zK,i,n) = Pnf(zK,i,n) = f(zK,i,n), i = 1, ..., lK .
Obviously

Qnf(ti,n) = f(ti,n), i = 1, ..., kn,
holds as well. Thus LnQnf = Lnf, f ∈ A and γ∞(Ln) ≤ ‖Ln‖‖Vn‖‖An‖. Since
Lnf → f , as n→∞ for every f ∈ A, ‖Ln‖ are uniformly bounded, and combining
this with the observation that (11) and (12) imply γ∞(Qn) = O(1). we obtain from
the above estimate

γ∞(Ln) = O(1).(13)

This last estimate allows us to apply Proposition 1 to contradict Lnf → f .

For the proof of Theorem 4 we need the following:

Proposition 3. Let {Bn} be a sequence of finite Blaschke products with zero sets
equal to {Zn}, n ≥ 1, respectively, and assume that the collection {Zn}, n ≥ 1,
is not uniformly Carleson. Furthermore let ε > 0 and the positive integer N are
given.

Then there is an integer m and a point z0 ∈ Do such that

Bm = B1,m...BN,m and |Bj,m(z0)| < ε for j = 1, ..., N,(14)

where the Bj,m’s are Blaschke products.

Proof. The following proof is an adaptation of an argument one can find in [CPS].
Since {Zn}, n ≥ 1, is not uniformly Carleson, we can find for every N and for every
constant C infinitely many positive integers m = m(C) > N , numbers h = h(C) ∈
(0, 1) and x = x(C)-real, such that∑

zk,m∈Sh(x)

(1 − |zk,m|) > Ch.

Here we may assume without loss of generality that 0 < h < 1
3 . Notice that for

t ∈ [1, 2]

log t ≥ log 2
3

(t2 − 1),

and thus for z ∈ Sh(x) and for z0 = (1− 3h)eix we have

log |1−
−
zz0

z − z0
| ≥ 1− |z|2

h

log 2
16

.

Now, if Am is the Blaschke product generated by those zeros wk of Bm that lie in
Sh(x), we get

|Am(z0)| ≤ exp(− log 2
8

C).(15)
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Since h is assumed to satisfy 0 < h < 1
3 we have for every z ∈ Sh(x)

| z − z0

1− −zz0

| ≥ 1
2
.(16)

If we pick C > 0 such that exp(− log 2
8

C) < (
ε

2
)N , then for m = m(C) we get from

(15) that
|Am(z0)| ≤ (

ε

2
)N .

This together with (16) implies that we can find an l1 such that

ε

2
<

l1∏
k=1

| wk − z0

1− −wkz0

| < ε.

Set

B1,m(z) =
l1∏
k=1

wk − z
1− −

wkz
.

Now it is easy to see that

| Am(z0)
B1,m(z0)

| < (
ε

2
)N−1.

Therefore there is an l2 such that

ε

2
≤

l2∏
k=l1+1

| wk − z0

1− −
wkz0

| < ε

and we can set

B2,m(z) =
l2∏

k=l1+1

wk − z
1− −

wkz
.

Obviously we can continue in the same fashion (recall that m > N), obtaining
Blaschke products B3,m, B4,m, ..., BN−1,m, and for each one of them |Bj,m(z0)| < ε.
Moreover

| Am(z0)
B1,m(z0)...BN−1,m(z0)

| < ε.

Now recall that Am divides Bm, and set

BN,m =
Bm

B1,m...BN−1,m
.

Obviously
|BN,m(z0)| < ε

and the proposition is proved.

Proof of Theorem 4. Consider two cases:
First if {Zn} happens to be a uniform Carleson collection of points, then Theorem

3 implies Theorem 4.
Second if {Zn} is not a uniformly Carleson collection of points, assume to the

contrary that there are projections Pn ∈ R(Zn) such that for every f ∈ A, Pnf → f ,
as n→∞. This in turn implies that ‖Pn‖ = O(1), and thus one can find an ε > 0
such that for every n ≥ 1

ε‖I − Pn‖ <
1
2
.(17)
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By Proposition 3, if δ > 0 and N > 0 are given, we can find m > N and z0 ∈ Do

so that Bm = B1,m...BN,m, and every Bj,m satisfies |Bj,m(z0)| < δ. Set

Fm(z) =
N∏
k=1

Bk,m(z)−Bk,m(z0)

1−
−
Bk,m(z0)Bk,m(z)

.

Obviously Fm is an inner function having zero of multiplicity at least N at z0. If we
take δ small enough we see that ‖Fm −Bm‖∞ < ε. An easy proposition (cf. [CPS]
Proposition 7) shows that in this case we can find a projection Qm on A with the
norm

‖Qm‖ ≤ 2sup{‖I − Pm‖}(18)

such that z0 (with multiplicity at least N) is one of the points that generate Qm,
i.e. kerQm = {f ∈ A : f = Fmg, g ∈ A}. Therefore one can find an absolute
constant J (cf. [CPS] Proposition 6) such that

‖Qm‖ ≥ J logN.(19)

Since N is arbitrary (19) contradicts (17) and (18) and the poof of Theorem 2 is
complete.

As an immediate application of Theorem 2 we obtain

Corollary 1. A does not possess an interpolating basis.
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