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GENERIC AUTOMORPHISMS
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Abstract. We show that the countable universal-homogeneous partial order
(P,<) has a generic automorphism as defined by the second author, namely
that it lies in a comeagre conjugacy class of Aut(P,<). For this purpose, we
work with ‘determined’ partial finite automorphisms that need not be auto-
morphisms of finite substructures (as in the proofs of similar results for other
countable homogeneous structures) but are nevertheless sufficient to charac-
terize the isomorphism type of the union of their orbits.

1. Introduction

The definition of generic given in [11] as applied to automorphisms g of a count-
able first order structure was that g should lie in a comeagre conjugacy class (where
the automorphism group of the structure is endowed with the natural topology).
A sufficient condition for the existence of generics is that the family P of finite
partial automorphisms of the structure should have the amalgamation property.
This property is however false in general, and a weaker condition, that P should
have a cofinal subset closed under conjugacy with the amalgamation property, is
also sufficient, and does hold in many cases. Typically we may take the cofinal
subset to consist of all partial automorphisms which are automorphisms of finite
substructures, and this condition is verified for the structures consisting of a pure
(countably infinite) set, and the random graph. This latter case was extended by
Hrushovski [7] to mutual generics for the random graph (under the obvious defi-
nition of what this should mean) via his ‘graph extension lemma’, and a similar
property of many other structures has been studied by Herwig and Lascar [2, 3, 4].

The purpose of this paper is to show that the sufficient condition can (sometimes)
be verified, even without using automorphisms of finite substructures. The two
main examples we have in mind are Aut(Q, <) (where we already knew from [11]
that there are generics), and the automorphism group of the countable universal-
homogeneous partial ordering (P,<) (where we did not). This latter structure has
been considered by Schmerl (in the context of his classification of all the countable
homogeneous partial orders [10]) and Glass, McCleary and Rubin [1], in studying
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its automorphism group (principally the verification of its simplicity). The point
about these two cases is that we cannot possibly expect to use automorphisms
of finite substructures, because all but trivial finite partial automorphisms must
have distinct domain and range. For, once an element is moved strictly upwards,
or downwards, it must lie in an infinite orbit, so cannot be encompassed by an
automorphism of a finite substructure.

Now it is quite easy to show that there are generics in Aut(Q, <) by giving an
explicit description, and this was done for instance in [11]. In the remainder of
the introduction we show that this may also be proved indirectly, by showing that
there is a cofinal subset of P (closed under conjugacy) having the amalgamation
property. This subset is quite easy to describe, so should serve as a warm-up for
the main proof, which does the same job for (P,<).

We call an isomorphism between substructures of a relational structure a partial
automorphism. If p and q are partial (possibly total) automorphisms, then q is an
extension of p if for any a ∈ dom p, aq is defined, and equals ap (where actions are
written on the right). We write P for the family of all finite partial automorphisms
of the structure, and say that A ⊆ P is cofinal if any member of P has an extension
in A. If p is a partial automorphism, a partial orbit of p is a non-empty set of the
form {apn : n ∈ Z, apn defined} for fixed a.

If p is a partial automorphism of a linearly ordered set (A,<), we say that
a ∈ A has parity +1 if a ∈ dom p ∧ a < ap or a ∈ range p ∧ ap−1 < a, parity 0 if
a ∈ dom p∧ ap = a, and parity −1 if a ∈ dom p∧ ap < a or a ∈ rangep∧ a < ap−1.
This is then well-defined on dom p ∪ rangep.

Theorem 1.1. There is a cofinal subset of the family of all finite partial automor-
phisms of (Q, <) having the amalgamation property.

Proof. We let A comprise all pairs (A, p) such that A is a finite linearly ordered
set, p is a partial automorphism of A, and A = dom p ∪ range p, and such that, if
a < b in A have equal parities, and a is maximal in its p-orbit, and b is minimal
in its p-orbit, then there is c having different parity and with a < c < b. The idea
of this condition is that it should be strong enough to stop distinct partial orbits
of p ‘joining up’, that is, for any extension f of p, a and b should lie in distinct f -
orbits. The set asserted to exist in the theorem is then the set A1 of all (A, p) ∈ A
such that A is a substructure of (Q, <), but it is slightly easier to consider A,
since when amalgamating, we can make a free choice of how to relate elements in
non-overlapping parts of the two structures being amalgamated, rather than taking
isomorphic copies. To see that A1 is a cofinal subset of P , let (A, p) ∈ P be given.
Let ∼ be the least equivalence relation on A such that a ∼ b whenever a ≤ b ≤ ap
or a ≥ b ≥ ap. Then all ∼-classes are intervals of elements all of which have the
same parity. Hence we may insert, between any consecutive such intervals of equal
parity, one of some different parity.

To verify amalgamation for A, let (A, p), (A1, p1), and (A2, p2) be such that
(A, p) is a restriction of both p1 and p2, and assume that A1 ∩ A2 = A. We use
induction on |A1 −A|+ |A2 −A|.

Case 1: There is a ∈ A such that ap is undefined, but ap1 and ap2 are both
defined. As a ∈ dom p ∪ range p, ap−1 is defined. If ap−1 = a, then ap is also
defined, contrary to assumption. Without loss of generality assume that ap−1 < a.
As p1, p2 extend p and are order-preserving, a < ap1, ap2.
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We show that ap1 and ap2 lie in the same interval determined by the points of
A. First note that ap1 6∈ A, and similarly ap2 6∈ A. For if ap1 ∈ A, as a 6∈ dom p,
and p1 extends p, ap1 6∈ range p. Also, ap1 has parity +1 in (A1, p1), hence also in
(A, p), and as a, ap1 are maximal and minimal respectively in their p-orbits, there
is a point b ∈ A1 with a < b < ap1 having different parity in (A1, p1). Hence either
bp1 ≤ b or b ≤ bp−1

1 . But if the former applies (that is, b ∈ dom p1), bp1 ≤ b < ap1,
contrary to p1 order-preserving; and in the latter case we have bp−1

1 < a < b, which
is also impossible.

Now suppose that ap1 < a′ < ap2 where a′ ∈ A. If a′ ∈ range p, then (a′)p−1 =
(a′)p−1

2 < a < (a′)p−1
1 = (a′)p−1, which is a contradiction. Hence a′ ∈ dom p. As

a < a′, a′ < ap2 < (a′)p2 = a′p, so a′ has parity +1, and is the minimal point of
its p-orbit. Let a < b < a′, where b has different parity. Then b < a′ < ap2 < bp2,
contradiction. Similarly we cannot have ap2 < a′ < ap1.

We now let A′ = A ∪ {ap1} and p′ = p∪ {(a, ap1)}, where the position of ap1 in
relation to the members of A may be determined either in A1, or with ap2 in place
of ap1 in A2 (which was the point of what we have just shown), and let A′2 and p′2
be obtained from A2 and p2 by replacing ap2 by ap1. Now (A′, p′) is a substructure
of both (A1, p1) and (A′2, p

′
2), and |A1−A′|+ |A′2−A′| < |A1−A|+ |A2−A|, so by

the induction hypothesis, (A1, p1) and (A′2, p
′
2) can be amalgamated over (A′, p′),

and this gives rise to an amalgamation of (A1, p1) and (A2, p2) over (A, p).
Case 2: There is a ∈ A such that ap−1 is undefined, but ap−1

1 and ap−1
2 are

both defined. This is similar to Case 1.
Case 3: There is a ∈ A such that one of ap1 and ap2 is defined, but not both;

suppose the former. Then also ap is not defined, so ap−1 is defined and ap−1 6= a.
Assume ap−1 < a, so that a has parity +1 (in all three structures). Choose a′ 6∈ A2

and let A′2 = A2 ∪ {a′}, p′2 = p2 ∪ {(a, a′)} where a′ is an immediate successor of
max({a}∪ {a′′p2 : a′′ < a, a′′ ∈ dom p2}) in the ordering on A′2. In other words, we
insert a′ in the first available interval of A2. Then (A′2, p

′
2) ∈ A. Now we proceed

as in Case 1 applied to (A1, p1) and (A′2, p′2). Afterwards, |A1 −A|+ |A2 −A| has
decreased by 1 (|A1−A| has gone down by 1, |A2−A| has stayed the same), so we
may appeal to the induction hypothesis.

Case 4: There is a ∈ A such that one of ap−1
1 and ap−1

2 is defined, but not both.
This is similar to Case 3.

Case 5: For all a ∈ A, ap undefined implies that ap1, ap2 are both undefined, and
ap−1 undefined implies that ap−1

1 , ap−1
2 are both undefined. So here all the partial

orbits of p1 and p2 are either partial orbits of p, or disjoint from dom p∪ rangep =
A1 ∩A2. On each interval determined by the points of A we insert the new points
of this interval of A1 to the left of all the new points of this interval of A2. This
results in a partial automorphism that may or may not lie in A. Since A is cofinal,
it can however be extended to a member of A.

2. The countable universal partial ordering

has a generic automorphism

Let (P,<) be the countable universal-homogeneous partial order, G its automor-
phism group, and P the family of all finite partial automorphisms of P . We seek a
cofinal subset A of P having the amalgamation property. The idea is to take A to
be the set of all ‘determined’ members of P in the sense we now describe.
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The following definition applies more generally (in particular, to the situation
discussed in section 1). If R is any relational structure, a strict extension of a finite
partial automorphism p of R is the restriction of some automorphism of R extending
p to the union of its orbits intersecting dom p ∪ range p. Two strict extensions f1

and f2 of p are isomorphic over p if there is an isomorphism θ : dom f1 → dom f2

fixing dom p pointwise and such that θf1 = f2θ (that is, θ carries the action of f1

on dom f1 to the action of f2 on dom f2). We say that p is determined if any two
strict extensions of p are isomorphic over p. We also say that a partial orbit X of
p ∈ P is determined (by p) if for any extensions f1, f2 of p to automorphisms with
orbits X1, X2 extending X , the actions of f1 on X1 and f2 on X2 are isomorphic
over p. Similarly (and this is the important case) we may talk of a pair of partial
orbits as being determined.

For (Q, <), a partial orbit is determined provided it intersects the domain of the
function, since on knowing just one value we can tell the parity, which determines
the isomorphism type. For a pair of partial orbits to be determined, what is essen-
tially required is that if the maximum of one is less than the minimum of the other,
then either they have different parities, or there is another partial orbit in between
having different parity, and this was the condition used in defining the family A.
These features again appear for (P,<), but in a rather more involved fashion, and
there are more cases, even for single orbits.

An orbit X of f ∈ G may ‘spiral’ or be an antichain (which we may view as an
infinite spiral). If x ∈ X , we let sp(x, f) = n > 0 be least such that x and xfn are
comparable (if any), and if there is no such n, we write sp(x, f) = ∞. If n = ∞,
or n is finite and x = xfn, we say that X is an orbit of parity 0 (which is a cycle
if n is finite). If x < xfn or xfn < x, we call sp(x, f) the ‘spiral length’ of x in f ,
and say that X is a positive or negative spiral respectively. If sp(x, f) = ∞, then
X is an infinite antichain, and all xf i are distinct and incomparable. It is clear
that sp(x, f) and the parity (positive, negative, or zero) of x are independent of
the choice of x from X . Usually (and without loss of generality) we may restrict
attention to non-negative parities (though it is clear that a generic automorphism
must have orbits of all possible kinds).

If the orbit X of f containing x is a positive spiral of spiral length n, we may let
ai for i ≥ 1 be defined by

ai =
{

1 if x < xf i,
0 otherwise.

Then 0 ≤ ai ≤ ai+n ≤ 1 and so (ai)i≥1 is eventually periodic with period dividing
n. We let w(x, f) be the least m ≥ 1 such that (ai)i≥m is periodic. More generally,
for another element y we may define bi for i ≥ 1 by

bi =
{

1 if y ≤ xf i,
0 otherwise.

Since X is a positive spiral, the same argument shows that (bi)i≥1 is eventually
periodic, and we let w(y, x, f) be the least m ≥ 1 such that (bi)i≥m is periodic.
(Thus w(x, f) = w(x, x, f).) Further generalizing, we may define bi by the same
formula, but now for all i ∈ Z. The same proof shows that (bi)i≥1 and (bi)i≤0 are
both eventually periodic, and we let w+(y, x, f) = w(y, x, f) be the least m ≥ 1
such that (bi)i≥m is periodic, and w−(y, x, f) be the greatest m ≤ 0 such that
(bi)i≤m is periodic.
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The natural partial ordering to consider on P is just extension. Quite often we
want to consider more restricted extensions. We say that q in P is an economical
extension of p if it is an extension, and every partial orbit of q contains a partial
orbit of p. We sometimes use the terminology of (weak) forcing in set theory to
help express what we want (after all, we are talking about generics), and we may
say that p ∈ P forces some statement, if it holds no matter which extension in
Aut(P,<) we take.

Lemma 2.1. Any p ∈ P has an economical extension all of whose partial orbits
are determined.

Proof. For this it suffices to extend (economically) to q so that a given partial orbit
X is determined, since we may then repeat. Note that it is important that the
extensions are economical, as otherwise, as we extend, we could introduce more
and more new partial orbits, and this process might never terminate.

Let x ∈ X and choose an extension f of p in G for which sp(x, f) is minimal,
and, subject to that, in which |{i : w(x, f) ≤ i < w(x, f)+sp(x, f), x is comparable
with xf i}| is maximal, and, subject to that, in which w(x, f) is minimal. Choose
a finite restriction q of f extending p so that

dom q ⊆ (dom p)fZ =
⋃
n∈Z(dom p)fn,

y ≤ z ≤ yqn ∧ y, yqn ∈ dom q → z ∈ dom q, (n ∈ Z),
sp(x, f) finite → xqi defined for 0 ≤ i < sp(x, f) + w(x, f),
q contains all finite cycles of f intersecting its domain.
Suppose then that f1 and f2 are extensions of q in G. If sp(x, f1) is finite, then

by minimality of sp(x, f), it is finite too. Hence xqsp(x,f) is defined, so the spiral
length of x under q is defined, and equals that for f , f1, and f2. Assume the spiral
is positive.

If w(x, f) ≤ i < w(x, f) + sp(x, q), then xqi is defined , so x < xf i ⇔ x < xf i1.
Therefore

|{i : w(x, f) ≤ i < w(x, f) + sp(x, q), x < xf i}|
= |{i : w(x, f) ≤ i < w(x, f) + sp(x, q), x < xf i1}|.

By maximality of |{i : w(x, f) ≤ i < w(x, f) + sp(x, f), x < xf i}|, and since
|{i : m ≤ i < m+ sp(x, q), x < xf i1}| is nondecreasing as m increases, and achieves
its maximum value at m = w(x, f1), we deduce that w(x, f1) ≤ w(x, f), and that
|{i : w(x, f1) ≤ i < w(x, f1) + sp(x, f1), x < xf i1}| is also maximal. By minimality
of w(x, f), w(x, f) ≤ w(x, f1), and so the two are actually equal. This determines
(XfZ, f) up to isomorphism.

A similar argument applies if sp(x, f2) is finite.
If sp(x, f1) and sp(x, f2) are both infinite, then the orbits of f1 and f2 containing

x are both antichains, so the actions of f1 and f2 on these orbits are isomorphic in
this case too.

It may be worth remarking (in case it seems unnecessary to consider such el-
ements) that it is possible for p to force there to be an orbit which is an infinite
antichain. For suppose that p = {(x, xp), (z, zp)} where x, y < xp, y, zp < z, and all
other pairs are incomparable. See Figure 1. Then by universal-homogeneity, these
elements may be taken in P , and p lies in P . Suppose that f ∈ Aut(P,<) extends
p. Then y is incomparable with yfn for every n ≥ 1 (and hence {yfn : n ∈ Z}
is an infinite antichain). For if y ≤ yfn, then y ≤ yfn ≤ zfn ≤ zf , contrary to
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y incomparable with zp, and if yfn ≤ y, then yfn ≤ xf , so yfn−1 ≤ x ≤ xfn−1

giving y ≤ x, contradiction.
We shall modify this example below to show why certain configurations of pairs

of orbits have to be considered.

Lemma 2.2. Any p ∈ P has an extension which is determined.

Proof. It suffices to determine all pairs of orbits, essentially because the language
of the structure (P,<) is binary. In other words, to tell whether two possible
extensions of p ∈ P are isomorphic over p, we only need to test two elements at
a time, and hence look at two orbits. By Lemma 2.1 we may suppose that all
(individual) orbits are determined.

Suppose that X and Y are partial orbits of p, x ∈ X, y ∈ Y , and let X(f) and
Y (f) stand for the corresponding orbits of an extension f of p in Aut(P,<). Let
A(f) = {n ∈ Z : x ≤ yfn} and B(f) = {n ∈ Z : x ≥ yfn}. To specify the
isomorphism type of f on X(f) ∪ Y (f) it suffices to determine A(f) and B(f).

Case 1: p forces x or y to lie in a spiral, x say. Suppose that the spiral is
positive.

Choose an extension f of p in Aut(P,<) for which

|{i : w+(y, x, f) ≤ i < w+(y, x, f) + sp(x, f), y ≤ xf i}|
is maximal, and let q1 be a finite restriction of f which is an economical extension of
p and such that xqi1 is defined for 0 ≤ i < w+(y, x, f)+sp(x, f). Then q1 determines
the set {i ≥ 0 : y ≤ xf i}. Similarly (using w−(y, x, f) in place of w+(y, x, f)) there
is an economical extension q2 of q1 which determines {i < 0 : y ≤ xf i}. Thus q2

determines A(f). Similarly, q2 has an extension q which also determines B(f).
We remark that if p has an extension f in Aut(P,<) for which A(f) and B(f)

are both non-empty, then x < yf i < xf j for some i and j in Z. Hence x lies in a
spiral of f , and as p determines all its orbits, this is already forced by p, so that
Case 1 applies.

Case 2: For every extension f of p, A(f) = B(f) = ∅.
Then p already determines the isomorphism type of the pair (X(f), Y (f)).
Case 3: Cases 1 and 2 are false. As Case 2 does not hold, there is an extension

f of p in Aut(P,<) such that A(f) 6= ∅ or B(f) 6= ∅; suppose the former without
loss of generality. By extending p (economically), we assume that it forces this. As
Case 1 is false, p also forces B(f) = ∅. If there is no extension f of p for which
|A(f)| > 1, then p forces |A(f)| = 1, and so determines the isomorphism type of
the pair of orbits. So by further economically extending p we suppose that it forces
x < yf i for at least two values of i. (In addition, p forces both x and y to lie in
infinite antichains of f , though we do not actually need this fact explicitly.)

Our object now is to extend p to q so as to determine completely the behaviour
of the set A(f). In fact we can show that A(f) can be forced to be eventually
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periodic on the left, and on the right, which will suffice. More precisely, we show
that there are q extending p, and positive integers N1, N2, n1, and n2, such that
for any two extensions f1 and f2 of q in Aut(P,<), if i, j ≥ N1 with i ≡ j mod n1,
then i ∈ A(f1) ⇔ i ∈ A(f2) ⇔ j ∈ A(f2) ⇔ j ∈ A(f1), and if i, j ≤ −N2 with
i ≡ j mod n2, then i ∈ A(f1) ⇔ i ∈ A(f2) ⇔ j ∈ A(f2)⇔ j ∈ A(f1). This clearly
suffices. Moreover, it is enough to consider the behaviour on the right, since the
argument about the behaviour on the left will be essentially the same.

Before going on, let us show, by means of an example, why we need to consider
the behaviour ‘on the left’ and ‘right’ separately. Let A+(f) = A(f) ∩ N and
A−(f) = A(f)− N. Consider the partial ordering illustrated in Figure 2, in which
r is incomparable with each of t, u, w, x, y; s is incomparable with each of t and
u; and y and u are incomparable, and so are v and x. By universal-homogeneity,
this may be taken as a substructure of P , and p = {(r, s), (t, u), (v, w)} lies in P .
Suppose that f is an automorphism extending p.

As in the previous example, {yfn : n ∈ Z} is an antichain. If x ≤ yf−n for
n > 0, then x ≤ (yf−1)f−(n−1) ≤ rf−(n−1) ≤ r, contrary to r incomparable with
x. On the other hand, if n ≥ 0, x ≤ vf ≤ vfn+1 ≤ yfn. So A(f) = {n ∈ Z : x ≤
yfn} = N. The point of this example is that the behaviour of A(f) on left and
right can be forced to be different (though each is eventually periodic), so that we
must treat the right and left directions separately. We can also easily ensure that
x lies in an infinite antichain if so desired, using a similar ‘trick’ for x instead of y.

If there is a bound on the size of |A+(f)| for extensions f of p, let n be the
maximum value of such |A+(f)|, and extend p to q so that q satisfies x ≤ yqi for
each i ∈ A+(f) where A+(f) is some suitable set of this maximal size. Then q
determines the value of A+(f). So we suppose that there is no bound, and show
that we can still extend so that the value of A+(f) is determined (though now it
will be infinite (and periodic)).

Let us now relabel x and y if necessary so that for some n > 0, x < y, ypn where
xpn, ypn 6∈ dom p.

Consider elements {ai : 0 ≤ i ≤ n}, {bi : 0 ≤ i ≤ n} not lying in dom p ∪ range p
so that
ai, aj are incomparable for i 6= j, except that a0 < an,
bi, bj are incomparable for i 6= j, except that bn < b0,
ai < ypi < bi,
if xpi < ypj, then xpi < aj ,
if z, zpr ∈ dom p ∪ rangep and z ≤ xpi < ypj with 0 ≤ i ≤ m, 0 ≤ j, j + r ≤ n,

then zpr < aj+r .
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The partial ordering on dom p ∪ rangep ∪ {ai : 0 ≤ i ≤ n} ∪ {bi : 0 ≤ i ≤ n} is
taken to be the transitive closure of this list (together with that on dom p∪ rangep).
The fact that this is a partial ordering follows from ypi 6≤ xpj for each i, j. So by
universal-homogeneity of P , we may suppose that each ai, bi lies in P , and that
dom p ∪ rangep ∪ {ai : 0 ≤ i ≤ n} ∪ {bi : 0 ≤ i ≤ n} is a substructure of P . The
extension q of p is given by

q = p ∪ {(ai, ai+1) : 0 ≤ i < n} ∪ {(bi, bi+1) : 0 ≤ i < n}.
We show that q ∈ P , that is, that it is a partial automorphism. Suppose that
z < t in dom q. It suffices to show that zq < tq for (z, t) lying in the list of pairs
generating the partial ordering given above.

(i) z = aj , t = ypj where j < n: then zq = aj+1 < ypj+1 = tq.
(ii) z = ypj, t = bj , is similar.
(iii) z = xpi, t = aj where xpi < ypj: since z and t lie in dom p, i, j < n, and so

xpi+1 < ypj+1. Hence zq = xpi+1 < aj+1 = tq.
(iv) zp−r, z ∈ dom p ∪ rangep and zp−r ≤ xpi < ypj with 0 ≤ i ≤ m, 0 ≤

j − r, j ≤ n, t = aj+r : as z ∈ dom p, (zp−r)pr+1 is defined, and as t ∈ dom p,
j + r < n. So zp−r ≤ xpi < ypj, and 0 ≤ i ≤ m, 0 ≤ j, j + r + 1 ≤ n. Hence
zq = (zp−r)pr+1 < aj+r+1 = tq.

The fact that zq < tq implies z < t follows by a similar argument.
Now let f be any extension of q to an automorphism of (P,<). If x < ypi where

0 ≤ i < n and k ≥ 0, then x < ai = a0f
i ≤ a0f

kn+i (since a0 < an = a0q
n)

= aif
kn < (ypi)fkn = yfkn+i. Conversely, if x < yfkn+i, then x < (ypi)fkn <

bif
kn = b0f

kn+i ≤ b0f i (since b0 > bn = b0q
n) = bi, so x < ypi.

This shows that q forces A+(f) to equal {kn+i : x < ypi, k ≥ 0}, so it determines
the value of A+(f) (which is thus periodic on the right).

Since in this proof (unlike Lemma 2.1) we had to introduce new partial orbits
to ‘freeze’ the desired behaviour of A(f), that is, the extensions were not always
‘economical’, we have to justify termination of the procedure. The point is that all
new partial orbits introduced were spirals (that is having finite spiral length). So we
begin by listing all pairs of partial orbits that are determined as infinite antichains,
and determine these, which may involve addition of extra spirals. We then have to
argue that we can further extend to determine all pairs of partial orbits for which
at least one is a spiral, without addition of extra partial orbits. But this requires
a fixed finite number of applications of Case 1, which was accomplished entirely
using economical extensions.

Theorem 2.3. The family of determined partial automorphisms of (P,<) has the
amalgamation property.

Proof. As in the proof of Theorem 1.1, we actually work with the family of iso-
morphic copies of determined partial automorphisms of (P,<), that is, the family
A of all (A,<, p) such that (A,<) is a finite partially ordered set, p is a partial
automorphism of (A,<), A = dom p ∪ range p, and for some determined partial
automorphism q of (P,<), (A,<, p) ∼= (dom q ∪ range q,<, q), under the induced
partial ordering.

Let (A,<, p), (A1, <, p1), (A2, <, p2) ∈ A be such that (A1, <, p1) and (A2, <, p2)
are extensions of (A,<, p). By universal-homogeneity of (P,<) we may suppose that
(A,<), (Ai, <) are substructures of (P,<). Let fi be an automorphism extending
pi, and Xi be the union of the orbits of fi which intersect A. Since p is determined,
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there is an isomorphism θ from f1|X1 to f2|X2 fixing A pointwise. Thus all points
of A1 −X1 and A2 −X2 lie in orbits of f1 and f2 respectively which are disjoint
from all partial orbits of p. By taking copies if necessary (which do not now have
to be substructures of (P,<)), we assume that A2−X2 is disjoint from A1∪X1. In
addition, by replacing X2 by its image under θ−1, we assume that X1 = X2, and θ
is the identity. Then (A1 ∪X1) ∩ (A2 ∪X1) = X1.

Let <1 and <2 be the partial orderings on A1∪X1 and A2∪X1 respectively, and
let ≺ be the transitive closure of <1 ∪ <2. Then ≺ partially orders A1 ∪X1 ∪ A2

since <1 and <2 agree on the intersection X1 of A1∪X1 and A2∪X1. For the same
reason, (A1∪X1, <1) and (A2∪X1, <2) are both substructures of (A1∪X1∪A2,≺).

Let g = f1|(A1 ∪X1)∪ f2|(A2 ∪X1). We show that g is a partial automorphism.
Let x ≺ y in dom g, with the object of showing that xg ≺ yg. If x and y lie
in the same one of A1 ∪ X1 and A2 ∪ X1, this is immediate since f1 and f2 are
automorphisms. Otherwise let x = x0 <i0 x1 <i1 x2 <i2 . . . <in−1 xn = y
for minimal n (≥ 2). Then the ij must alternate, and hence for 0 < j < n,
xj ∈ (A1 ∪X1) ∩ (A2 ∪X1) = X1. By minimality of n, n = 2. Suppose that i0 = 1
and i1 = 2 (the case i0 = 2 and i1 = 1 being similar). Thus x <1 x1 <2 y, with
x1 ∈ X1. Hence xg = xf1 <1 x1f1 = x1f2 <2 yf2 = yg, as required. The proof
that xg ≺ yg ⇒ x ≺ y is similar.

Now A1 ∪A2, together with the restrictions of ≺ and g, forms a common exten-
sion (B,<, q) of (A1, <, p1) and (A2, <, p2). The reason we have to use the larger
structure A1∪X1∪A2 as intermediate when defining ≺ is to ensure that g is defined
on x1. (If we just worked with A1 ∪A2, then we could have x <1 x1 <2 y for which
x, y ∈ dom g but x1 6∈ dom g, and then we could not deduce xg ≺ yg. This is a sim-
ilar point to (iv) towards the end of the proof of the previous lemma.) Finally, by
Lemma 2.2, (B,<, q) can be extended to a determined partial automorphism.

Corollary 2.4. There is a generic automorphism of the countable universal-
homogeneous partial ordering.

Proof. This follows from Theorem 2.1 of [11], since it is clear that the family of
determined partial automorphisms of (P,<) is closed under conjugacy, and Lemma
2.2 told us that the family is cofinal.

3. Further questions

The existence of a generic automorphism may seem rather a technical matter,
and certainly one would like to see the result of this paper applied and extended.
We have not yet done so, but the principal goals to aim at are clear. First, one
should establish the existence of (arbitrarily long) mutually generic sequences of
automorphisms, which would be the key step in verifying the small index property
for (P,<) (see [5]). For (Q, <), it has been remarked by Hodkinson [6] that there can
be no pair of mutually generic automorphisms, but the more complicated structure
of (P,<) (in particular, the fact that generics possess orbits which are infinite
antichains) suggests that we cannot immediately rule them out in this case. Failing
this, one might try to verify the small index property by other methods, or interpret
(P,<) in its automorphism group more directly. This would place this work in the
context of more general results about such interpretations. See [8, 9] for example.

Another possible use of generics would be to streamline the proof of the sim-
plicity of Aut(P,<) given in [1] (where 16 conjugates were in general required to
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express one non-identity element as a product of conjugates of another). The cor-
rect minimum number is probably 3 or 4, and one could establish sufficiency of 4
by showing that for any non-identity g1 and g2, there is h such that g1h

−1g2h is
generic. Very likely one can take h to be generic ‘over’ (g1, g2) (but to show that
this is possible is at least as hard as finding mutually generic pairs).

The most promising aspect of our work is perhaps that it shows that one can
sometimes work with partial automorphisms which are not automorphisms of sub-
structures, and it should be possible to use this idea in other contexts.
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