STAR RING HOMOMORPHISMS BETWEEN COMMUTATIVE BANACH ALGEBRAS

TAKESHI MIURA

(Communicated by Dale Alspach)

Abstract

We consider a *-ring homomorphism from a commutative Banach algebra with an involution to a commutative Banach algebra with a symmetric involution. We give the Gelfand transform of the *-ring homomorphism image.

1. Introduction

Definition 1.1. Let A and B be commutative Banach algebras with a $*$-involution and a \star-involution, respectively. We say that $\phi: A \rightarrow B$ is a $*$-ring homomorphism if the following equalities hold for every $f, g \in A$:

$$
\begin{aligned}
& \phi(f+g)=\phi(f)+\phi(g), \\
& \phi(f g)=\phi(f) \phi(g) \\
& \phi\left(f^{*}\right)=\phi(f)^{\star}
\end{aligned}
$$

Šemrl [4] proved the following theorem on a structure of a *-ring homomorphism between two commutative C^{*}-algebras.

Theorem (4). Let X and Y be compact Hausdorff spaces, $C(X)$ and $C(Y)$ the Banach algebras of all complex-valued continuous functions on X and Y, respectively. If $\phi: C(X) \rightarrow C(Y)$ is a*-ring homomorphism, then there exist clopen decomposition $\left\{Y_{-1}, Y_{0}, Y_{1}\right\}$ of Y and a continuous map $\Phi: Y_{-1} \cup Y_{1} \rightarrow X$ such that the equality

$$
\phi(f)(y)= \begin{cases}\overline{f(\Phi(y)),}, & y \in Y_{-1} \\ 0, & y \in Y_{0} \\ f(\Phi(y)), & y \in Y_{1}\end{cases}
$$

holds for every $f \in C(X)$.
Kaplansky [1] proved that every ring isomorphism between semisimple complex Banach algebras can be decomposed into a linear part, a conjugate-linear part, and a non-continuous part on a finite-dimensional ideal.

We consider a $*$-ring homomorphism from a commutative Banach algebra A with an involution to a non-radical commutative Banach algebra B with a symmetric involution. We prove that the (Jacobson) radical of A is mapped into the (Jacobson)

[^0]radical of B by the $*$-ring homomorphism. If A is non-radical, we show that there exists a decomposition $\left\{Y_{-1}, Y_{0}, Y_{1}\right\}$ of the maximal ideal space of B such that the Gelfand transform of the $*$-ring homomorphism image of f is 0 on Y_{0} and a composition of a non-zero continuous ring homomorphism on \mathbb{C} and the Gelfand transform of f on $Y_{-1} \cup Y_{1}$ for every $f \in A$.

2. Main Results

Let A be a commutative Banach algebra. We say that A is a radical algebra if there is no non-zero complex homomorphism on A. Then we define the radical of A, denoted by $\operatorname{rad} A$, to be A. Unless A is a radical algebra, then we define $\operatorname{rad} A$ to be the intersection of all the maximal regular ideals in A. For convenience, we say that A is non-radical if A is not a radical algebra.

Let B be a commutative Banach algebra with a \star-involution. We say that a \star-involution is symmetric if the equality

$$
\widehat{x^{\star}}=\overline{\hat{x}}
$$

holds for every $x \in B$, where \cdot denotes the Gelfand transform, and • denotes the complex conjugate.

Theorem 2.1. Let A be a commutative Banach algebra with a *-involution, $B a$ non-radical commutative Banach algebra with a symmetric \star-involution, and M_{A} and M_{B} the maximal ideal spaces of A and B, respectively. If $\phi: A \rightarrow B$ is a *-ring homomorphism, then $\phi(\operatorname{rad} A) \subset \operatorname{rad} B$ holds. Therefore

$$
\widehat{\phi(f)}=0 \quad(f \in A)
$$

holds if A is a radical algebra. If A is non-radical, there exist a decomposition $\left\{Y_{-1}, Y_{0}, Y_{1}\right\}$ of M_{B} and a continuous map $\Phi: Y_{-1} \cup Y_{1} \rightarrow M_{A}$ such that the equality

$$
\phi(f)^{\wedge}(\varphi)= \begin{cases}\overline{\hat{f}(\Phi(\varphi)),}, & \varphi \in Y_{-1} \\ 0, & \varphi \in Y_{0} \\ \hat{f}(\Phi(\varphi)), & \varphi \in Y_{1}\end{cases}
$$

holds for every $f \in A$. Then Y_{-1} and Y_{1} are open subsets in M_{B}. In particular, if A has a unit element, then Y_{-1}, Y_{0} and Y_{1} are clopen, and Y_{-1} and Y_{1} are compact subsets in M_{B}.

Before we turn to the proof, we show the following lemma.
Lemma 2.2. Let $\phi: A \rightarrow \mathbb{C}$ be $a *$-ring homomorphism on a commutative Banach algebra A with $a *$-involution. Then

$$
\phi=0 \text { or } \phi \in M_{A} \quad \text { or } \bar{\phi} \in M_{A}
$$

holds. Therefore $\phi=0$ if A is a radical algebra.
Proof. First we consider the case where A has a unit element e. If we define $\phi_{e}: \mathbb{C} \rightarrow \mathbb{C}$ to be

$$
\phi_{e}(\lambda)=\phi(\lambda e) \quad(\lambda \in \mathbb{C})
$$

then ϕ_{e} is a $*$-ring homomorphism. In fact, it is easy to see that ϕ_{e} is a ring homomorphism. Since $e=e^{*}$, the equality

$$
\begin{aligned}
\phi_{e}(\bar{\lambda}) & =\phi(\bar{\lambda} e)=\phi\left((\lambda e)^{*}\right) \\
& =\overline{\phi(\lambda e)}=\overline{\phi_{e}(\lambda)}
\end{aligned}
$$

holds for every $\lambda \in \mathbb{C}$. In particular,

$$
\phi_{e}(t)=\overline{\phi_{e}(t)} \quad(t \in \mathbb{R}) .
$$

That is, $\operatorname{Im} \phi_{e}=0$ on \mathbb{R}, where $\operatorname{Im} \phi_{e}$ denotes the imaginary part of ϕ_{e}. Now, Kestelman 22 proved that if a ring homomorphism $\tau: \mathbb{C} \rightarrow \mathbb{C}$ is unbounded, then $\tau(\mathbb{R})$ is dense in \mathbb{C}. Therefore ϕ_{e} must be bounded. If $\phi_{e} \neq 0$, then $\phi_{e}(\lambda)=\lambda \quad(\lambda \in$ $\mathbb{C})$ or $\phi_{e}(\lambda)=\bar{\lambda} \quad(\lambda \in \mathbb{C})$, since $\phi_{e}(r)=r$ for every rational number r, and since ϕ_{e} is bounded.
(i) In case $\phi_{e}=0$, we have

$$
\begin{aligned}
\phi(f) & =\phi(e) \phi(f) \\
& =\phi_{e}(1) \phi(f) \\
& =0
\end{aligned}
$$

for every $f \in A$. Therefore, $\phi=0$ on A.
(ii) In case $\phi_{e}(\lambda)=\lambda$ for every $\lambda \in \mathbb{C}$, we have, for every $f \in A$ and every $\lambda \in \mathbb{C}$,

$$
\begin{aligned}
\phi(\lambda f) & =\phi(\lambda e) \phi(f) \\
& =\phi_{e}(\lambda) \phi(f) \\
& =\lambda \phi(f) .
\end{aligned}
$$

Therefore, $\phi \in M_{A}$.
(iii) In case $\phi_{e}(\lambda)=\bar{\lambda}$ for every $\lambda \in \mathbb{C}$, we see that

$$
\bar{\phi}(\lambda f)=\lambda \bar{\phi}(f)
$$

for every $f \in A$ and every $\lambda \in \mathbb{C}$, in a way similar to the above. Therefore, $\bar{\phi} \in M_{A}$.
We have proved the case that A is unital.
In case that A does not have a unit element, put $A_{e}=\{(f, \lambda): f \in A, \lambda \in \mathbb{C}\}$ the commutative Banach algebra adjoining a unit element to A. Moreover we can extend the $*$-involution to A_{e} :

$$
(f, \lambda)^{*}=\left(f^{*}, \bar{\lambda}\right) \quad(f, \lambda) \in A_{e}
$$

Suppose $\phi \neq 0$. That is, there exists a $g_{0} \in A$ such that $\phi\left(g_{0}\right) \neq 0$. Put $\tilde{\phi}: A_{e} \rightarrow \mathbb{C}$ as follows:

$$
\tilde{\phi}(f, \lambda)=\phi(f)+\frac{\phi\left(\lambda g_{0}\right)}{\phi\left(g_{0}\right)} \quad(f, \lambda) \in A_{e}
$$

It is easy to see that $\tilde{\phi}$ is additive and an extension of ϕ. Also

$$
\tilde{\phi}((f, \lambda)(g, \mu))=\tilde{\phi}(f, \lambda) \tilde{\phi}(g, \mu)
$$

holds for every $(f, \lambda),(g, \mu) \in A_{e}$, since the equalities

$$
\begin{aligned}
\frac{\phi\left(\lambda \mu g_{0}\right)}{\phi\left(g_{0}\right)} & =\frac{\phi\left(\lambda g_{0}\right)}{\phi\left(g_{0}\right)} \frac{\phi\left(\mu g_{0}\right)}{\phi\left(g_{0}\right)} \\
\phi(\lambda f) & =\phi(f) \frac{\phi\left(\lambda g_{0}\right)}{\phi\left(g_{0}\right)}
\end{aligned}
$$

hold for every $f \in A, \lambda, \mu \in \mathbb{C}$. Hence, $\tilde{\phi}$ is multiplicative. Moreover, it is easy to see that

$$
\tilde{\phi}\left((f, \lambda)^{*}\right)=\overline{\tilde{\phi}(f, \lambda)}
$$

holds for every $(f, \lambda) \in A_{e}$, since

$$
\frac{\phi\left(\lambda g_{0}\right)}{\phi\left(g_{0}\right)}=\frac{\phi\left(\lambda g_{0}^{*}\right)}{\phi\left(g_{0}^{*}\right)} \quad(\lambda \in \mathbb{C})
$$

Therefore, $\tilde{\phi}: A_{e} \rightarrow \mathbb{C}$ is a $*$-ring homomorphism. Then $\tilde{\phi}$ satisfies only one of the following, by the result proved above:

$$
\tilde{\phi}=0 \text { or } \tilde{\phi} \in M_{A_{e}} \text { or } \overline{\tilde{\phi}} \in M_{A_{e}} \text {. }
$$

Since $\tilde{\phi}$ is an extension of ϕ, and $\phi \neq 0$, we see that $\phi \in M_{A}$ or $\bar{\phi} \in M_{A}$. In particular, $\phi=0$ if A is a radical algebra. This completes the proof.

Proof of Theorem 2.1. For every $\varphi \in M_{B}$, put $\phi_{\varphi}: A \rightarrow \mathbb{C}$ as follows:

$$
\phi_{\varphi}(f)=\phi(f)^{\wedge}(\varphi) \quad(f \in A)
$$

Then we see that ϕ_{φ} is a $*$-ring homomorphism. Therefore, for every $\varphi \in M_{B}, \phi_{\varphi}=$ 0 or $\phi_{\varphi} \in M_{A}$ or $\overline{\phi_{\varphi}} \in M_{A}$, by Lemma 2.2. Therefore, $\phi_{\varphi}=0$ for every $\varphi \in M_{B}$, if A is a radical algebra. By the definition of $\operatorname{rad} A$,

$$
\phi(\operatorname{rad} A)=\phi(A) \subset \operatorname{rad} B
$$

holds, if A is a radical algebra. If A is non-radical, we define Y_{-1}, Y_{0} and Y_{1} as follows:

$$
\begin{aligned}
Y_{-1} & =\left\{\varphi \in M_{B}: \overline{\phi_{\varphi}} \in M_{A}\right\} \\
Y_{0} & =\left\{\varphi \in M_{B}: \phi_{\varphi}=0\right\} \\
Y_{1} & =\left\{\varphi \in M_{B}: \phi_{\varphi} \in M_{A}\right\}
\end{aligned}
$$

Then it is easy to see that $\left\{Y_{-1}, Y_{0}, Y_{1}\right\}$ is a decomposition of M_{B}, and that Y_{-1} and Y_{1} are open subsets in M_{B}. Finally, we define $\Phi: Y_{-1} \cup Y_{1} \rightarrow M_{A}$ as follows:

$$
\Phi(\varphi)= \begin{cases}\overline{\phi_{\varphi}}, & \left(\varphi \in Y_{-1}\right) \\ \phi_{\varphi}, & \left(\varphi \in Y_{1}\right)\end{cases}
$$

Then we see that Φ is continuous on $Y_{-1} \cup Y_{1}$. For every $f \in A$, the equality

$$
\phi(f)^{\wedge}(\varphi)= \begin{cases}\overline{\hat{f}(\Phi(\varphi))}, & \left(\varphi \in Y_{-1}\right), \\ 0, & \left(\varphi \in Y_{0}\right), \\ \hat{f}(\Phi(\varphi)), & \left(\varphi \in Y_{1}\right),\end{cases}
$$

holds, by the definition of Φ. Therefore,

$$
\phi(\operatorname{rad} A) \subset \operatorname{rad} B
$$

holds, even if A is non-radical.

In particular, if A has the unit element e, for every $\varphi \in M_{B}$, we have $\phi(i e)^{\wedge}(\varphi)=$ $-i$ or $\phi(i e)^{\wedge}(\varphi)=0$ or $\phi(i e)^{\wedge}(\varphi)=i$, by the formula of $\phi(f)^{\wedge}(\varphi)$ above. Consequently, the equalities

$$
\begin{aligned}
Y_{-1} & =\left\{\varphi \in M_{B}: \phi(i e)^{\wedge}(\varphi)=-i\right\} \\
Y_{0} & =\left\{\varphi \in M_{B}: \phi(i e)^{\wedge}(\varphi)=0\right\} \\
Y_{1} & =\left\{\varphi \in M_{B}: \phi(i e)^{\wedge}(\varphi)=i\right\}
\end{aligned}
$$

hold for the decomposition $\left\{Y_{-1}, Y_{0}, Y_{1}\right\}$ of M_{B}. Since $\phi(i e)^{\wedge}$ is continuous on M_{B}, Y_{-1}, Y_{0} and Y_{1} are all clopen subsets in M_{B}. Hence, Y_{-1}, Y_{0} and Y_{1} are compact if M_{B} is compact. If M_{B} is locally compact, $Y_{-1} \cup Y_{1}=\left\{\varphi \in M_{B}:\left|\phi(i e)^{\wedge}(\varphi)\right|=1\right\}$ is a compact subset in M_{B}, since $\widehat{B} \subset C_{0}\left(M_{B}\right)$ the algebra of all complex-valued continuous functions on M_{B} which vanish at infinity. Therefore, Y_{-1} and Y_{1} are compact.

If ϕ is a $*$-homomorphism between C^{*}-algebras A and B, then ϕ is norm decreasing [3, Theorem 1.5.7], where $*$-homomorphism is a linear $*$-ring homomorphism. We consider a *-ring homomorphism from a commutative Banach algebra with an involution to a commutative Banach algebra with a symmetric involution. If the Gelfand transform on B is an isometry, the following result holds.
Corollary 2.3. In addition to the assumptions in Theorem 2.1, if $\|b\|_{B}=\|\hat{b}\|_{\infty}$ holds for every $b \in B$, then ϕ is norm decreasing.

Proof. For every $f \in A$

$$
\|\phi(f)\|_{B}=\|\widehat{\phi(f)}\|_{\infty} \leq\|\hat{f}\|_{\infty} \leq\|f\|_{A}
$$

holds, where $\|\cdot\|_{A}$ and $\|\cdot\|_{B}$ denote the norms on A and B, respectively.
Corollary 2.4. In addition to the assumptions in Theorem 2.1, if ϕ is surjective, then Φ is defined on M_{B} into M_{A} and injective.

Proof. First, we show that A must be non-radical. Suppose not. Then

$$
B=\operatorname{rad} B
$$

holds, since ϕ is surjective. This is a contradiction. Hence, A is non-radical.
Moreover, $M_{B}=Y_{-1} \cup Y_{1}$ holds. In fact, assume to the contrary that there exists a $\varphi^{\prime} \in M_{B}$ such that $\phi_{\varphi^{\prime}}=0$. Since ϕ is surjective, $\varphi^{\prime}=0$ on B. We arrived at a contradiction. Hence, Φ is defined on M_{B} into M_{A}.

Suppose $\varphi_{1} \neq \varphi_{2}\left(\varphi_{1}, \varphi_{2} \in M_{B}\right)$. We show that there exists a $x \in B$ with $x=x^{\star}$ such that $\varphi_{1}(x) \neq \varphi_{2}(x)$. In fact, by the hypothesis, there exists a $y \in B$ such that $\varphi_{1}(y) \neq \varphi_{2}(y)$. We can write $y=u+i v$ for some $u, v \in B$ with $u=u^{\star}$ and $v=v^{\star}$. Then

$$
\varphi_{j}(y)=\varphi_{j}(u)+i \varphi_{j}(v) \quad(j=1,2)
$$

Since \star-involution is symmetric, $\overline{\varphi_{j}(u)}=\varphi_{j}(u), \overline{\varphi_{j}(v)}=\varphi_{j}(v)$ holds for $j=1,2$. Hence, $\varphi_{1}(u) \neq \varphi_{2}(u)$ or $\varphi_{1}(v) \neq \varphi_{2}(v)$ holds. Therefore, we proved that there exists a $x \in B$ with $x=x^{\star}$ such that $\varphi_{1}(x) \neq \varphi_{2}(x)$. Since ϕ is surjective, there exists an $f \in A$ such that $\phi(f)=x$. Then $\phi(f)^{\wedge}$ is real valued on M_{B}. Therefore,

$$
\hat{x}\left(\varphi_{j}\right)=\hat{f}\left(\Phi\left(\varphi_{j}\right)\right) \quad(j=1,2)
$$

holds, by the Gelfand transform formula of $\phi(f)$ in Theorem 2.1 Hence, $\Phi\left(\varphi_{1}\right) \neq$ $\Phi\left(\varphi_{2}\right)$. This completes the proof.

Example 2.1. In Theorem [2.1, Y_{-1} and Y_{1} need not be closed subsets in M_{A}, unless A is unital. In fact, put

$$
\begin{aligned}
A & =\left\{f \in C([0,1]): f\left(\frac{1}{3}\right)=0=f\left(\frac{2}{3}\right)\right\}, \\
B & =C([0,1]), \\
\phi(f)(x) & =\left\{\begin{array}{ll}
\overline{f(x)} & \left(x \in\left[0, \frac{1}{3}\right)\right) \\
0 & \left(x \in\left[\frac{1}{3}, \frac{2}{3}\right]\right) \\
f(x) & \left(x \in\left[\frac{2}{3}, 1\right]\right)
\end{array} \quad(f \in A) .\right.
\end{aligned}
$$

Then, A and B are commutative Banach algebras with respect to the pointwise operations and the supremum norm, and $\phi: A \rightarrow B$ is a $*$-ring homomorphism, where involutions on A and B are both complex conjugates. Then the decomposition $\left\{Y_{-1}, Y_{0}, Y_{1}\right\}$ of $M_{B}=[0,1]$ is as follows:

$$
Y_{-1}=\left[0, \frac{1}{3}\right), Y_{0}=\left[\frac{1}{3}, \frac{2}{3}\right], Y_{1}=\left(\frac{2}{3}, 1\right] .
$$

Hence Y_{-1} and Y_{1} are not closed subsets in $[0,1]$.

References

[1] I. Kaplansky, Ring isomorphisms of Banach algebras, Canad. J. Math. 6 (1954), 374-381. MR 16:49e
[2] H. Kestelman, Automorphisms of the field of complex numbers, Proc. London Math. Soc. (2) 53 (1951), 1-12. MR 12:812b
[3] G. K. Pedersen, C^{*}-Algebras and their Automorphism Groups, Academic Press, London 1979. MR 81e:46037
[4] P. Šemrl, Non linear perturbations of homomorphisms on $C(X)$, Quart. J. Math. Oxford Ser. (2) 50 (1999), no. 197, 87-109. MR 2000a:46074
[5] S.-E. Takahasi and O. Hatori, A structure of ring homomorphisms on commutative Banach algebras, Proc. Amer. Math. Soc. 127 (1999) no. 8, 2283-2288. MR 99j:46058

Department of Mathematical Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-chou, Niigata 950-2181, Japan

E-mail address: miura@scux.sc.niigata-u.ac.jp

[^0]: Received by the editors May 17, 1999 and, in revised form, October 22, 1999.
 1991 Mathematics Subject Classification. Primary 46J10.
 Key words and phrases. Commutative Banach algebras, ring homomorphisms.

