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STAR RING HOMOMORPHISMS
BETWEEN COMMUTATIVE BANACH ALGEBRAS

TAKESHI MIURA

(Communicated by Dale Alspach)

Abstract. We consider a ∗-ring homomorphism from a commutative Banach
algebra with an involution to a commutative Banach algebra with a symmetric
involution. We give the Gelfand transform of the ∗-ring homomorphism image.

1. Introduction

Definition 1.1. Let A and B be commutative Banach algebras with a ∗-involution
and a ?-involution, respectively. We say that φ : A→ B is a ∗-ring homomorphism
if the following equalities hold for every f, g ∈ A:

φ(f + g) = φ(f) + φ(g),
φ(fg) = φ(f)φ(g),
φ(f∗) = φ(f)?.

Šemrl [4] proved the following theorem on a structure of a ∗-ring homomorphism
between two commutative C∗-algebras.

Theorem ([4]). Let X and Y be compact Hausdorff spaces, C(X) and C(Y ) the
Banach algebras of all complex-valued continuous functions on X and Y , respec-
tively. If φ : C(X) → C(Y ) is a ∗-ring homomorphism, then there exist clopen
decomposition {Y−1, Y0, Y1} of Y and a continuous map Φ : Y−1 ∪ Y1 → X such
that the equality

φ(f)(y) =


f(Φ(y)), y ∈ Y−1,

0, y ∈ Y0,

f(Φ(y)), y ∈ Y1,

holds for every f ∈ C(X).

Kaplansky [1] proved that every ring isomorphism between semisimple complex
Banach algebras can be decomposed into a linear part, a conjugate-linear part, and
a non-continuous part on a finite-dimensional ideal.

We consider a ∗-ring homomorphism from a commutative Banach algebra A with
an involution to a non-radical commutative Banach algebra B with a symmetric
involution. We prove that the (Jacobson) radical ofA is mapped into the (Jacobson)
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radical of B by the ∗-ring homomorphism. If A is non-radical, we show that there
exists a decomposition {Y−1, Y0, Y1} of the maximal ideal space of B such that
the Gelfand transform of the ∗-ring homomorphism image of f is 0 on Y0 and a
composition of a non-zero continuous ring homomorphism on C and the Gelfand
transform of f on Y−1 ∪ Y1 for every f ∈ A.

2. Main results

Let A be a commutative Banach algebra. We say that A is a radical algebra if
there is no non-zero complex homomorphism on A. Then we define the radical of
A, denoted by radA, to be A. Unless A is a radical algebra, then we define radA
to be the intersection of all the maximal regular ideals in A. For convenience, we
say that A is non-radical if A is not a radical algebra.

Let B be a commutative Banach algebra with a ?-involution. We say that a
?-involution is symmetric if the equality

x̂? = x̂

holds for every x ∈ B, where ·̂ denotes the Gelfand transform, and ·̄ denotes the
complex conjugate.

Theorem 2.1. Let A be a commutative Banach algebra with a ∗-involution, B a
non-radical commutative Banach algebra with a symmetric ?-involution, and MA

and MB the maximal ideal spaces of A and B, respectively. If φ : A → B is a
∗-ring homomorphism, then φ(radA) ⊂ radB holds. Therefore

φ̂(f) = 0 (f ∈ A)

holds if A is a radical algebra. If A is non-radical, there exist a decomposition
{Y−1, Y0, Y1} of MB and a continuous map Φ : Y−1 ∪ Y1 → MA such that the
equality

φ(f )̂ (ϕ) =


f̂(Φ(ϕ)), ϕ ∈ Y−1,

0, ϕ ∈ Y0,

f̂(Φ(ϕ)), ϕ ∈ Y1,

holds for every f ∈ A. Then Y−1 and Y1 are open subsets in MB. In particular, if
A has a unit element, then Y−1, Y0 and Y1 are clopen, and Y−1 and Y1 are compact
subsets in MB.

Before we turn to the proof, we show the following lemma.

Lemma 2.2. Let φ : A→ C be a ∗-ring homomorphism on a commutative Banach
algebra A with a ∗-involution. Then

φ = 0 or φ ∈MA or φ ∈MA

holds. Therefore φ = 0 if A is a radical algebra.

Proof. First we consider the case where A has a unit element e. If we define
φe : C→ C to be

φe(λ) = φ(λe) (λ ∈ C),



∗-RINGHOMOMORPHISM 2007

then φe is a ∗-ring homomorphism. In fact, it is easy to see that φe is a ring
homomorphism. Since e = e∗, the equality

φe(λ̄) = φ(λ̄e) = φ((λe)∗)

= φ(λe) = φe(λ)

holds for every λ ∈ C. In particular,

φe(t) = φe(t) (t ∈ R).

That is, Imφe = 0 on R, where Imφe denotes the imaginary part of φe. Now,
Kestelman [2] proved that if a ring homomorphism τ : C → C is unbounded, then
τ(R) is dense in C. Therefore φe must be bounded. If φe 6= 0, then φe(λ) = λ (λ ∈
C) or φe(λ) = λ̄ (λ ∈ C), since φe(r) = r for every rational number r, and since
φe is bounded.

(i) In case φe = 0, we have

φ(f) = φ(e)φ(f)
= φe(1)φ(f)
= 0

for every f ∈ A. Therefore, φ = 0 on A.
(ii) In case φe(λ) = λ for every λ ∈ C, we have, for every f ∈ A and every λ ∈ C,

φ(λf) = φ(λe)φ(f)
= φe(λ)φ(f)
= λφ(f).

Therefore, φ ∈MA.
(iii) In case φe(λ) = λ̄ for every λ ∈ C, we see that

φ (λf) = λφ (f)

for every f ∈ A and every λ ∈ C, in a way similar to the above. Therefore, φ ∈MA.
We have proved the case that A is unital.
In case that A does not have a unit element, put Ae = {(f, λ) : f ∈ A, λ ∈ C}

the commutative Banach algebra adjoining a unit element to A. Moreover we can
extend the ∗-involution to Ae :

(f, λ)∗ = (f∗, λ̄) (f, λ) ∈ Ae.

Suppose φ 6= 0. That is, there exists a g0 ∈ A such that φ(g0) 6= 0. Put φ̃ : Ae → C
as follows:

φ̃(f, λ) = φ(f) +
φ(λg0)
φ(g0)

(f, λ) ∈ Ae.

It is easy to see that φ̃ is additive and an extension of φ. Also

φ̃((f, λ)(g, µ)) = φ̃(f, λ) φ̃(g, µ)

holds for every (f, λ), (g, µ) ∈ Ae, since the equalities

φ(λµg0)
φ(g0)

=
φ(λg0)
φ(g0)

φ(µg0)
φ(g0)

,

φ(λf) = φ(f)
φ(λg0)
φ(g0)
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hold for every f ∈ A, λ, µ ∈ C. Hence, φ̃ is multiplicative. Moreover, it is easy to
see that

φ̃((f, λ)∗) = φ̃(f, λ)

holds for every (f, λ) ∈ Ae, since

φ(λg0)
φ(g0)

=
φ(λg0

∗)
φ(g0

∗)
(λ ∈ C).

Therefore, φ̃ : Ae → C is a ∗-ring homomorphism. Then φ̃ satisfies only one of the
following, by the result proved above:

φ̃ = 0 or φ̃ ∈MAe or φ̃ ∈MAe.

Since φ̃ is an extension of φ, and φ 6= 0, we see that φ ∈ MA or φ ∈ MA. In
particular, φ = 0 if A is a radical algebra. This completes the proof.

Proof of Theorem 2.1. For every ϕ ∈MB, put φϕ : A→ C as follows:

φϕ(f) = φ(f )̂ (ϕ) (f ∈ A).

Then we see that φϕ is a ∗-ring homomorphism. Therefore, for every ϕ ∈MB, φϕ =
0 or φϕ ∈ MA or φϕ ∈ MA, by Lemma 2.2. Therefore, φϕ = 0 for every ϕ ∈ MB,
if A is a radical algebra. By the definition of radA,

φ(radA) = φ(A) ⊂ radB

holds, if A is a radical algebra. If A is non-radical, we define Y−1, Y0 and Y1 as
follows:

Y−1 = {ϕ ∈MB : φϕ ∈MA},
Y0 = {ϕ ∈MB : φϕ = 0},
Y1 = {ϕ ∈MB : φϕ ∈MA}.

Then it is easy to see that {Y−1, Y0, Y1} is a decomposition of MB, and that Y−1

and Y1 are open subsets in MB. Finally, we define Φ : Y−1 ∪ Y1 →MA as follows:

Φ(ϕ) =

{
φϕ, (ϕ ∈ Y−1),
φϕ, (ϕ ∈ Y1).

Then we see that Φ is continuous on Y−1 ∪ Y1. For every f ∈ A, the equality

φ(f )̂ (ϕ) =


f̂(Φ(ϕ)), (ϕ ∈ Y−1),
0, (ϕ ∈ Y0),
f̂(Φ(ϕ)), (ϕ ∈ Y1),

holds, by the definition of Φ. Therefore,

φ(radA) ⊂ radB

holds, even if A is non-radical.
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In particular, if A has the unit element e, for every ϕ ∈MB, we have φ(ie)̂ (ϕ) =
−i or φ(ie)̂ (ϕ) = 0 or φ(ie)̂ (ϕ) = i, by the formula of φ(f )̂ (ϕ) above. Conse-
quently, the equalities

Y−1 = {ϕ ∈MB : φ(ie)̂ (ϕ) = −i},
Y0 = {ϕ ∈MB : φ(ie)̂ (ϕ) = 0},
Y1 = {ϕ ∈MB : φ(ie)̂ (ϕ) = i}

hold for the decomposition {Y−1, Y0, Y1} of MB. Since φ(ie)̂ is continuous on MB,
Y−1, Y0 and Y1 are all clopen subsets in MB. Hence, Y−1, Y0 and Y1 are compact if
MB is compact. If MB is locally compact, Y−1 ∪ Y1 = {ϕ ∈ MB : |φ(ie)̂ (ϕ)| = 1}
is a compact subset in MB, since B̂ ⊂ C0(MB) the algebra of all complex-valued
continuous functions on MB which vanish at infinity. Therefore, Y−1 and Y1 are
compact.

If φ is a ∗-homomorphism between C∗-algebras A and B, then φ is norm decreas-
ing [3, Theorem 1.5.7], where ∗-homomorphism is a linear ∗-ring homomorphism.
We consider a ∗-ring homomorphism from a commutative Banach algebra with an
involution to a commutative Banach algebra with a symmetric involution. If the
Gelfand transform on B is an isometry, the following result holds.

Corollary 2.3. In addition to the assumptions in Theorem 2.1, if ‖b‖B = ‖b̂‖∞
holds for every b ∈ B, then φ is norm decreasing.

Proof. For every f ∈ A
‖φ(f)‖B = ‖φ̂(f)‖∞ ≤ ‖f̂‖∞ ≤ ‖f‖A

holds, where ‖ · ‖A and ‖ · ‖B denote the norms on A and B, respectively.

Corollary 2.4. In addition to the assumptions in Theorem 2.1, if φ is surjective,
then Φ is defined on MB into MA and injective.

Proof. First, we show that A must be non-radical. Suppose not. Then

B = radB

holds, since φ is surjective. This is a contradiction. Hence, A is non-radical.
Moreover, MB = Y−1 ∪ Y1 holds. In fact, assume to the contrary that there

exists a ϕ
′ ∈MB such that φϕ′ = 0. Since φ is surjective, ϕ

′
= 0 on B. We arrived

at a contradiction. Hence, Φ is defined on MB into MA.
Suppose ϕ1 6= ϕ2 (ϕ1, ϕ2 ∈MB). We show that there exists a x ∈ B with x = x?

such that ϕ1(x) 6= ϕ2(x). In fact, by the hypothesis, there exists a y ∈ B such that
ϕ1(y) 6= ϕ2(y). We can write y = u+ iv for some u, v ∈ B with u = u? and v = v?.
Then

ϕj(y) = ϕj(u) + iϕj(v) (j = 1, 2).

Since ? -involution is symmetric, ϕj(u) = ϕj(u), ϕj(v) = ϕj(v) holds for j = 1, 2.
Hence, ϕ1(u) 6= ϕ2(u) or ϕ1(v) 6= ϕ2(v) holds. Therefore, we proved that there
exists a x ∈ B with x = x? such that ϕ1(x) 6= ϕ2(x). Since φ is surjective, there
exists an f ∈ A such that φ(f) = x. Then φ(f )̂ is real valued on MB. Therefore,

x̂(ϕj) = f̂(Φ(ϕj)) (j = 1, 2)

holds, by the Gelfand transform formula of φ(f) in Theorem 2.1. Hence, Φ(ϕ1) 6=
Φ(ϕ2). This completes the proof.
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Example 2.1. In Theorem 2.1, Y−1 and Y1 need not be closed subsets in MA,
unless A is unital. In fact, put

A = {f ∈ C([ 0, 1 ]) : f(1
3 ) = 0 = f(2

3 )},
B = C([ 0, 1 ]),

φ(f)(x) =


f(x) (x ∈ [0, 1

3 ))
0 (x ∈ [ 1

3 ,
2
3 ] ) (f ∈ A).

f(x) (x ∈ (2
3 , 1] )

Then, A and B are commutative Banach algebras with respect to the pointwise
operations and the supremum norm, and φ : A → B is a ∗-ring homomorphism,
where involutions on A and B are both complex conjugates. Then the decomposi-
tion {Y−1, Y0, Y1} of MB = [0, 1] is as follows:

Y−1 = [0,
1
3

), Y0 = [
1
3
,

2
3

], Y1 = (
2
3
, 1].

Hence Y−1 and Y1 are not closed subsets in [0, 1].
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