POINTWISE FOURIER INVERSION—AN ADDENDUM

MICHAEL E. TAYLOR

(Communicated by Christopher D. Sogge)

ABSTRACT. In this note we complete a circle of results presented in §5 of an earlier work of the author (J. Fourier Anal. 5 (1999), 449–463), establishing the endpoint case of Proposition 10 of that paper. As a consequence, we have results on pointwise convergence of the Fourier series (summed by spheres) of a function on the 3-dimensional torus with a simple jump across a smooth surface Σ , with no curvature hypotheses on Σ , extending Proposition 7 of that paper.

Let $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$ denote the *n*-dimensional torus with its standard flat metric and Laplace operator Δ , and let χ_R be the characteristic function of [-R, R] (set equal to 1/2 at the endpoints). Given a function f on \mathbb{T}^n , we investigate the pointwise convergence of

(1)
$$S_R f(x) = \chi_R(\sqrt{-\Delta}) f(x)$$

as $R \to \infty$. Following [BC] and [T], we pick $\beta \in C_0^{\infty}(\mathbb{R})$ with $\beta(t) = 1$ for $|t| \le a$, 0 for $|t| \ge 2a$ (for some a > 0) and write

(2)
$$S_R f(x) = S_R^{\beta} f(x) + T_R^{\beta} f(x),$$

with

(3)
$$S_R^{\beta} f(x) = \frac{1}{\pi} \int \frac{\sin Rt}{t} \beta(t) \cos t \sqrt{-\Delta} f(x) dt$$

and

(4)
$$T_R^{\beta} f(x) = \delta_R(\sqrt{-\Delta}) f(x) = \sum_{\nu \in \mathbb{Z}^n} \delta_R(|\nu|) \hat{f}(\nu) e^{i\nu \cdot x},$$
$$\delta_R(\lambda) = \chi_R(\lambda) - \hat{\beta} * \chi_R(\lambda).$$

Formula (3) allows for wave equation techniques to be used on the term $S_R^{\beta}f(x)$; a number of results on this were established in [PT], yielding conditions under which one can say that $S_R^{\beta}f(x) \to f(x)$ as $R \to \infty$. One then has the task of examining when $T_R^{\beta}f(x) \to 0$.

Received by the editors October 20, 1999.

²⁰⁰⁰ Mathematics Subject Classification. Primary 42B08, 35P10.

Key words and phrases. Fourier series.

The author was partially supported by NSF grant DMS-9877077.

An attack initiated in [BC] starts with an application of Cauchy's inequality to write

(5)
$$|T_R^{\beta} f(x)|^2 \le \left\{ \sum_{\nu} |\delta_R(|\nu|)| \cdot |\hat{f}(\nu)|^2 \right\} \cdot \left\{ \sum_{\nu} |\delta_R(|\nu|)| \right\}.$$

A number of successful estimates on the right side of (5) were produced in [BC], and further estimates were produced in [T]. Here we aim to establish the following.

Theorem 1. Let Σ be a smooth (n-1)-dimensional surface in \mathbb{T}^n . Assume

(6)
$$f \in I^{-(n-3)/2}(\mathbb{T}^n, \Sigma).$$

Also assume that there exists $T_0 \in (0-,\infty)$ such that, for $|t| \ge T_0$, $\cos t \sqrt{-\Delta} f(x)$ has no caustics of order (n-1)/2, and assume $\beta(t) = 1$ for $|t| \le T_0$. Then

(7)
$$\lim_{R \to \infty} ||T_R^{\beta} f||_{L^{\infty}} = 0.$$

Here $I^{\mu}(\mathbb{T}^n, \Sigma)$ denotes the space of classical conormal distributions with singularity of order μ on Σ . More precisely, it is the linear span of elements of the form Pg, where g is piecewise smooth with a simple jump across Σ and $P \in OPS^{\mu}(\mathbb{T}^n)$, i.e., P is a classical pseudodifferential operator of order μ . The notion of order of a caustic is as in §10 of [PT] (cf. also Definition 5.7.3 of [D]). Perfect focus caustics are of order (n-1)/2, and this is the maximum possible order of a caustic.

Theorem 1 was established in [T], under an additional curvature hypothesis on Σ . Also in [T] there is a result valid for general Σ that is slightly weaker than Theorem 1. Namely, it is shown that (7) holds provided

(8)
$$f \in I^{\mu}(\mathbb{T}^n, \Sigma), \qquad \mu < -\frac{n-3}{2}.$$

Thus Theorem 1 here establishes the endpoint case of that result. A corollary of Theorem 1 is the following result, which extends Proposition 7 of [T]. Its proof follows from Theorem 1 here in the same way that Proposition 7 of [T] follows from Theorem 1 there.

Corollary 2. Let $\Sigma \subset \mathbb{T}^3$ be a smooth surface, and suppose the Lagrange flow off $N^*\Sigma \setminus 0$ has no caustics of order 1. Let f be a piecewise smooth function on \mathbb{T}^3 , with a simple jump across Σ . If $x \in \Sigma$, set f(x) equal to the mean value of its limits from the two sides. Then we have pointwise Fourier inversion:

(9)
$$\lim_{R \to \infty} S_R f(x) = f(x), \quad \forall x \in \mathbb{T}^3.$$

The convergence holds locally uniformly on $\mathbb{T}^3\backslash\Sigma$, and the Gibbs phenomenon is manifested near Σ .

We turn to the proof of Theorem 1, which uses the arguments developed in §5 of [T], with an additional twist. As in [T] we make use of a one-parameter family of cutoffs. Take a function $\gamma \in C_0^{\infty}(\mathbb{R})$, equal to 1 on (-1,1) and 0 outside (-2,2), and set

(10)
$$\gamma_{\varepsilon}(t) = \gamma(\varepsilon t), \qquad S_R^{\varepsilon} = S_R^{\gamma_{\varepsilon}}.$$

We have a formula for $T_R^{\varepsilon} = S_R - S_R^{\varepsilon}$ similar to (4), and an estimate similar to (5), with $\delta_R(t)$ replaced by $\delta_R^{\varepsilon}(\lambda) = \chi_R(\lambda) - \hat{\gamma}_{\varepsilon} * \chi_R(\lambda)$. Note that $\delta_R^{\varepsilon}(\lambda)$ is a sum of

two bump functions, concentrated near $\lambda=\pm R,$ with "width" proportional to ε . We have the estimate

(11)
$$\sum_{\nu \in \mathbb{Z}^n} |\delta_R^{\varepsilon}(|\nu|)| \le C\varepsilon R^{n-1} + CR^{n-1-\alpha_n},$$

for some $\alpha_n > 0$, as a consequence of the lattice point estimate (5.12) of [T]. On the other hand, as shown in Propositions 8–9 of [T],

(12)
$$f \in I^{\mu}(\mathbb{T}^n, \Sigma) \Rightarrow \sum_{k \leq |\nu| \leq k+1} |\hat{f}(\nu)|^2 \leq Ck^{2\mu-2}$$
$$\Rightarrow \sum_{\nu \in \mathbb{Z}^n} |\delta_R^{\varepsilon}(|\nu|)| \cdot |\hat{f}(\nu)|^2 \leq CR^{2\mu-2},$$

for $k, R \ge 1$, with C independent of $\varepsilon \in (0, 1]$. We apply this with $\mu = -(n-3)/2$. Thus, by the analogue of (5), we have

(13)
$$||S_R f - S_R^{\varepsilon} f||_{L^{\infty}}^2 \le C\varepsilon + CR^{-\alpha_n}.$$

Next, under the hypotheses on β made in Theorem 1, as in (5.20) of [T], we have

(14)
$$||S_R^{\beta} f - S_R^{\varepsilon} f||_{L^{\infty}} \le C_{\varepsilon\beta} R^{\kappa - (n-1)/2},$$

for $\varepsilon < 1/T_0, R \ge 1$, with $\kappa = \kappa(\varepsilon, \beta) < (n-1)/2$. Hence

(15)
$$\limsup_{R \to \infty} ||S_R f - S_R^{\beta} f||_{L^{\infty}} \le C \varepsilon^{1/2}, \quad \forall \varepsilon > 0.$$

This proves Theorem 1.

Remark 1. We have phrased our results in terms of Fourier series on the standard torus $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$, but they also work on \mathbb{R}^n/Γ for general lattices $\Gamma \subset \mathbb{R}^n$.

 $Remark\,\,2.\,$ In [T] we used the fact that, if Σ has nowhere vanishing Gauss curvature, then

(16)
$$f \in I^{\mu}(\mathbb{T}^n, \Sigma) \Rightarrow \sum_{k < |\nu| < k + \varepsilon} |\hat{f}(\nu)|^2 \le C\varepsilon k^{2\mu - 2} + Ck^{2\mu - 2 - \alpha_n}.$$

We have finessed this point here, but it is of independent interest to know in what generality such estimates hold. These estimates are related to certain nonisotropic lattice point estimates; we plan to discuss them in a future paper.

References

- [BC] L. Brandolini and L. Colzani, Localization and convergence of eigenfunction expansions, J. Fourier Anal. 5 (1999), 431–447.
- [D] J. J. Duistermaat, Fourier Integral Operators, Birkhäuser, Boston, 1996. MR 96m:58245
- [PT] M. Pinsky and M. Taylor, Pointwise Fourier inversion: a wave equation approach, J. Fourier Anal. 3 (1997), 647–703. MR 99d:42019
- [T] M. Taylor, Pointwise Fourier inversion on tori and other compact manifolds, J. Fourier Anal. 5 (1999), 449–463.

Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599

E-mail address: met@math.unc.edu