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A REMARK ON THE HARNACK INEQUALITY
FOR NON-SELF-ADJOINT EVOLUTION EQUATIONS

ROGER CHEN

(Communicated by Bennett Chow)

ABSTRACT. In this paper we consider a non-self-adjoint evolution equation
on a compact Riemannian manifold with boundary. We prove a Harnack
inequality for a positive solution satisfying the Neumann boundary condition.
In particular, the boundary of the manifold may be nonconvex and this gives
a generalization to a theorem of Yau.

1. INTRODUCTION

Let (M™,g) be an n-dimensional compact Riemannian manifold with boundary
OM +# (. In this paper, we shall study the equation

ou = .
(1) E—Au—;fiui—VfufO in M,
with the boundary condition
Ju
(2) 5, =0 ondM,

where A is the Laplace operator associated to metric g, f; and V are smooth
functions in C2(M) x C*((0,00)), and - is the derivative with respect to the unit
outward normal vector to the boundary 9M.

In classical situations, J. Moser established a Harnack inequality locally for pos-
itive solutions in [4] and [B]. However, the geometric dependency of the estimates is
complicated and sometimes unclear. In a fundamental work [3], Li and Yau derived
a version of gradient estimates for the positive solutions to the heat equations on
a compact Riemannian manifold. Using those estimates, they deduced a Harnack
type inequality and demonstrated how that is applied to establish various upper
and lower heat kernel bounds away from the boundary for both the Dirichlet and
Neumann boundary conditions. Due to the interior nature of their gradient esti-
mates, in general the heat kernel bounds do not extend to the boundary. However,
when the boundary is convex or the manifold is closed, the gradient estimates are
valid globally, and so are the corresponding heat kernel bounds. Since many evo-
lution equations in applied mathematics are not self-adjoint and have a convection
term, S. T. Yau [8] recently generalized the Li-Yau’s parabolic Harnack inequality
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to cover the non-self-adjoint equation (1). In [2], [3], and [8], the equation (1) was
studied when M is either a complete noncompact manifold, or M is a compact man-
ifold. When M is a compact manifold, the Neumann condition is imposed on the
boundary, and some convexities for the boundary M, functions f;, i = 1,... ,n,
and V are assumed there to obtain good gradient estimates. The purpose of the
paper is to develop a Harnack inequality for equations (1) and (2) when OM, or
functions f; and V' may not satisfy the convexity in [8]. The method employed here
to establish the gradient estimate essentially follows from [3], or [8]. However, there
are some technical complications due to the nonconvexity of the boundary as the
estimates then necessarily involve the second fundamental form of the boundary
and a so-called “interior rolling R-ball” condition for the boundary.

To be more specific, we consider a compact manifold (M™, g) with boundary O M
satisfying a “interior rolling R-ball”. We recall the following definition from [I].

Definition 1.1. 0M is said to satisfy the “interior rolling R-ball” condition if for
R

each point p € OM there is a geodesic ball B (5), centered at ¢ € M with radius

£ such that p = By(£)NOM and B,(%) c M.

Throughout the paper, let {e1,...,e,} be a locally defined orthonormal frame
field of the tangent bundle and e, = v on the boundary dM. Also, we make the
following assumptions (*) on M and dM, unless stated otherwise.

(¥) M™ is a compact manifold with boundary OM, such that the Ricci
curvature of M satisfies Ricys > —K and the second fundamental form
elements of M with respect to outward pointing unit normal v satisfies
II > —H for some constants K, H > 0. Further assume that OM also
satisfies the “ interior rolling R-ball condition” with R chosen to be
small.

Theorem 1.1. Let M, OM be as in (%), where R satisfies that —% + H <0, and
assume that f, = 0 on the boundary OM. Let p be a positive constant satisfying
20+ H)?> > p> (1+ H)?, where H=H + Z2, and 6 be a constant such that

(3) —(%+9)V+V +— foﬁz thfy ngW<0,
=1

on the boundary, where f; ., = ene;(fi), Vi, =V, = e, V. Suppose that there exists
a constant a such that

—2min{[ 1—|—H Z f”arzxj, —1) Z fi,jxixj}

4,J=1 4,J=1

n n
(4) - 2min{(1 + H)Q Z Rijxixj, Z Rijxixj}

i,5=1 i,j=1

+ NZ(Afi - ij,ji)xi + u Z Rijfjl‘i <a

i=1 j=1 i,j=1
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for all z;. Let 1> e > 0 be any constant satisfying that € — (1+ H)?e+(1+H) > 0,
and assume that there exist nonnegative constants b and v so that

3 >
2 > W A——— -1
. C4b_CQ+C3+4(M_1)C4,C4b >(M )(C'1+a),
(5) 2 — 1)
and C’él'yzui7
n
where
u 20:-1),, 2(u—1) g
> 2 N U V. — R AN .
€1 > Gmax{ - = ;[f wm S A= o i) Afii)
2(1+ H)? _ _
- TAv,o} +8H(1+ H)|VV]
2 72,2
L—€—e€ 1+ H)?2 -y —é
+{2(1—e) i 2(1— o) ]wa
i,5=1
4n—1)HBH +1) 2H
C2 = 7 TR
8H 1 32H2
o= S+ 3 % +
o, - An—¢ —(1+H) elln j(1+H)]
! n(1— (1 + H)? ’
for all x € M and any t > 0. Then
= n
—u(logu)t—f—|V10gu|2+u2fi(logu) ’y qu”—
i=1

Remarks 1.1. (1) When infy; V< 0, let w = ue™ ' ™MV Then w satisfies the
equation

ow - .
En :Aw+;fiwi+(V—1]I\14fV)w

and one draws the conclusion of the theorem with V replaced by V 4+ (u—1)infp V'
in (5).

(2) If H = 0 as in Theorem 2 of [§], then Cy = C3 = 0, and we may take ¢ = 0,
and obtain that Cy = 2(71—;1) Substituting this into (4), we obtain that v = u and
we may choose b such that

b > 2 (01 +a).
By setting u = 1, we recover the result of Theorem 2 in [g].
(3) As in [1], we assume that —£ + H < 0, in Theorem 1.1 and if H > 0, we
further choose R >0 to be sufﬁciently small such that /|Kg|tan(R\/|Kg|) <
g—i—— \/— |KR|) —WhenKR#O, andHRS%whenKRzo,

where Krp = max {Rmna( )z € OM(R), 1 < a <n-—1} and OIM(R) = {z €
M UOM|r(z) < R}.
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2. PROOF

In this section, we modify a gradient estimate method as in [I] and [6] to prove
our theorem for a positive solution u of (1) satisfying the boundary condition (2).

Proof. We define a function on M by

plx) = (1 +n(?))2,

where r(z) denotes the distance from = € M to M and n(r) is a nonnegative
smooth function defined on [0, c0) such that

nir)<H+2 ifre|0,3),
© { g irebs

n(r)=H+ % ifrell,o0)
with 7(0) = 0, 0 < /() < 2(H + £8), 7/ (0) = H + &2, y'(r) > —2(H + £2).
By applying Warner’s Rauch comparison theorem (cf. Theorem 3.2 in [7]), one
concludes that there is no focal points for the Jacobi fields associated to the bound-
ary for () < R when R is chosen to satisfy the condition (3) in Remark 1.1.
Hence, r(z) is differentiable provided that r(x) < R. This implies that the function
plz) =1+ 7](%)))2 is smooth in M.

Let ¢ = —logu. Then

(7) ot =Ap — |V80|2+Zfz‘%‘—
i=1
Consider
(8) Y= Wﬁpr@IQ—uZﬁ@ﬁpV MZf”er
=1

where b is a constant and will be chosen later.
Direct computations give us

— 2
b = ppr + p| Vel — u(; fipi)e + pVi + @ - = Z fisits

n

2(Vep, Vib) = plVel7 + 2(IVel* + V) Y pioi +2p > 0i(|Vel? + Vi)
i=1 i=1

n n n
—MZ% Z iP)i — 1 Z fiij %3
=1 j=1

ij=1

i=1 =1

S i =y fipu + (Z Fo) (Vo2 + V) + 03 £:(IVel? + V)
i=1 i=1

n

—HZfi(ij%)i—% mf“
i=1 =1
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and

A = p(Ap) + 200 Y 0%+ Y 0i(Ap)i+ Y Rijii] +2  pil Vool?

2,7=1 =1 2,7=1 i=1
(AP)|VSO|2 K Z Rz]f]@z —2u Z fz,]soz] ,LLZfz ASO
=1 1,j=1
Y AR+ (A0V +2Y ik oAV A S A
i=1 i=1 i=1

where R;; is the Ricci curvature of the manifold (which is zero if defined on
Euclidean space). Using (7), we have

(e = Ap)e = =(IVel> = Y fipi + V)i

i=1
and we have
(9)
Y+ 2(Vep, Vo) = > furhs — Ay
i=1
—ul[Vol> = fipi + V1 +20 > picpri — Z i)+ pVi+ ot . T Vel
i=1 i=1 i=1
gz Frit +23 pigi([Vo2 + V) +2p2% Veol? + Vi)
i=1 i=1
_QNZQOi(ijSOj — K Z Jigipi — NZfzSOtz Zfipi)(|v30|2+v)
i=1  j=1 ij=1 i=1
—p > (Ve + Vi) + 1Y £ fivs)i g Z Figiki =200 @3
i=1 =1 =1 i=1 inj=1
+) il + Vo> =D fiei + V)i + Z Rijpips] =2 pilVol?
i=1 j=1 ij=1 i=1
— (Ap)IVel* + 1> (Afi)pi +2u Y figpis + 1Y filer + Vel
i=1 ij=1 i=1
n n n M n
- X;fj%‘ +V)i+u ‘21 Rij fii — (Ap)V — 22;&% —PAV + 3 z; Afii
1= ,]= 1= =

= —uVi+pVi + 2; __Zfzzt+2zpz¢z |v90|2+v _2,“2902 ij@]

—n Y frei - <Z fipi) |Vl + V) - piz (IVel? + Vi) Z fiiifi

i,7=1 i=1 i=1 i=1,7
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20> o} - Zsoz me + Z Rijpips] =2 pilVel;
=1

4,j=1 1,j=1

—(Bp)(|Vel + V) + #Z(Afi)‘/’i +2u Z Figeis + Yy fillVel + V)i

i=1 i,j=1 i=1
+ Z Rijfipi — 22/)1‘/; pAV + ”ZAf”
,j=1
Note that

=20 0D fiei)i—p Y IVelF +20) @D fie)i
=1 Jj=1 =1 i=1 Jj=1

+ud  filVell =200—p) Y fispips

i=1 ij=1

Substituting this into (9) and grouping terms with a factor (|V¢|? + V) and terms
without a factor ¢;, or a factor ¢;; together, respectively, we have

Ui+ 2(Vp, Vi) = > firhi — Ay

=1
_(M_p)v;—i_Z_tg__Zfzzt"_,uf PZfzz
n
g Z fj]zfz —QZPz i

(10) i=1 . i=1

— pAV gz fii + sz%pz Zfzpz - |V<P|2 +V)

n
Z i,5PiP; — 2p Z Rijpip; +HZ Afi — Zf] gi
=1 Q=1
+u Z Rij fipi —2p Z 3 — QZMIV@I? + 24 Z fiiij-
ij—1 ij—1 i=1 ij=1

Since

n
— 2m1n{[ 1 —|—H Z fmxza:], — 1) Z fi,jJ?iJ)j}

4,j=1 4,j=1

n n
— 2min{(1 —|—H)2 Z RijJ?iJ)j, Z Rija:ia:j}

4,J=1 4,J=1

+MZ Afi— ij]z xz"‘NZAJCz ij]z xz+NZszfsz<a

1,j=1
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for all x;, we have

i+ 2(Vep, Vi) — Z Fibi — Ay

n
ny
< —(p—p) t+ﬁ_§z.fzzt+ H—=p Zfz i
i=1 =1
RN -
(11) +3 Z fijifi QszVz
i=1,7 =1
" n
— pAV + §ZAJCM ( sz@z Zfzpz Ap)(|vw|2+V)
=1 =1 =1
—20 ) @l - 2ZPZIWIZ +2p Z fii®i-
i,j=1 =1
Define
(12) Ik il
S
then we have
2 _ 72 _
(13) n+e (1+H)€<ﬁ p+ €2 €
1—¢ 1—e

Using (13) and the inequality 2zy < %mQ +2¢ey? for any € > 0, it is easy to see that

—2p Z oy —4 Z Pijpipi + 21 Z fi.ipij

,j=1 ,j=1 1,j=1
=-2p Z %2;' —4 Z wijpjei +2(1 — p) Z fijpij +2p Z i, i
,j=1 ,j=1 ‘;j_l ,j=1
—~ |VP| 2 2(p—p) —~
=20 > o5+ = (IVel* + V) + 2¢ Z et == e
i,j=1 i,j=1 4,j=1
1= D)E RS
iy BP9 3 fe
ij=1 ij—l
2 Vp (n = D)e
_ 2|Vp? (Vo2 +V)—2p Z o3 +2p Z figpig + S
1,7=1 1,7=1 1,7=1
2 Vp 1= P)e, +
= | " ———(IVel?+V)-2p Z Yij — fu [_ (T] Z sz,]
i,j=1 i,j=1
2IVpl - D)y v
< — (VeI +V) - ——me G >

i,5=1



2170 ROGER CHEN

Substituting (12)—(14) into (11), we have
(15)

Y +2(Vep, Vi) — Z Fibi — A

_(M_p)‘/;f—’—z_]fg__z:fzzt"_ﬂ PZfzz

+g2fmfz 22/)1 @ pAV—FHZAf”_‘_a—F[ ’j
i=1,j i=1 3,j=1
n n 2 _ n
+ [22/)1%01 Zfzpz |v€p| }(lv |2 +V) - _P Ap — % Zfi,i]Q
i=1 i=1 i=1

If ¢ achieves its maximum on the boundary, then g—f > 0 at that point. However,
for R satisfying that % + H <0, we have

8w 8p ) o ) n—1 n—1
< Zr _ zr = _ o s
0= ov pepue + 8V|Vsﬁ| +p3y|v¢| M;(fw/% + ]Z::lhwfj%)
8
R AGER T
26 n—1 . n—1 n-—1
< (G + OVl + 2H Vel + p{ (Y f2,)* Zhwfg 3Vl
=1 =1 j=1

2H 1 n
- (?+9>V+Vu_52fz,zu
<——|W|2+2H|W|2 o foﬁz Zhufj

=1 j=1
2H
—(F—FH)V‘FV —_E fzw<0

which is a contradiction. Assume that at ty > 0, 1 becomes zero at some point p
in the interior of the manifold and % < 0 for ¢ < tg. Then vy > 0, V¢ = 0, and
A < 0 at this point, and substituting these into (15), we have

0< —(up—p)Vi+ ;L—tg——Zf”t'f‘ﬂ pilV"_‘quJﬂfl

= 1,]

(16) i=1 i=1 i,7=1

n

2
+ [ > pigi — Zfzpz @}(IWDI2 +V)

i=1

_;ﬁ(|v¢|2+v Zfl@z"‘%pt__z:fzz) .
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Claim 1.

(17) (|V50|2+V—Zfi%+sﬁt - %me)Q
i=1 i=1

> @ [o1VelP +V) =3 figit o5 D fi]
i=1 =1
where 3 > 0 and

o p—(+H)?
" SRR

Let w = [Vo|? + V and z = Y1, fipi + 5 21y fii — @i Since ¢ = 0 at (p,to),
the equation (8) implies that

(19) p(|Vg0|2+V MZfﬂPH-MOt uz.fm‘Fb =0.

i=1

In other words,

(20) Z_Zf%pz wYr+ 5 Zfzz |V<,0|2+V)

Therefore,

fw — 212 = Bpw — 21 = {[w — 2] + Blow — 21} x {fw - 2] - Blow — 2]}
= [(1+ pB)w — (14 B)2] x [(1 - pB)w — (1 - Bz

Using (20), one easily checks that the above expression is nonnegative and the
claim is verified. Let C; be a nonnegative constant defined by the inequality

u 2(p—1) - 2(p—1)
> 2 _ 2\ Ty, T UV % p4
Ci > 5 maX{ o Vi ;21 {fut . fiVi

n r7\2
(21) ~ (3 k) - A = 2 Aviod s+ YOV
=1

2

I—€—¢ (1+H)262—6u—e
2i—e & 21— }Zf

+|
4,j=1
As in [I], we choose R according to condition (3) in Remark 1.1 and apply a
comparison theorem in [7] to obtain that
H Kpg|tan(R\/|K
22) Ar>-(n-1)2F | rltan(RyIKRD o 0 1ysm +1)
\/IK— tan(R\/|Kr|)

when |Kg| # 0. When Kr = 0, we also obtain the comparison (22) by letting
V| KRr| go to 0. Also, we obtain that

(23) &>_{4(n—1)12(3H+1)+4H}__CQ’

p R?
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2|V v L 2lVpl?
Ipl Iplzf 2|Vp|*

2

p? €p

8H " . 32H?
_+_SUPZfz 2+ ERQ :Cg.

(24)

Therefore, we have the following inequality:

oS o A 2V (g
Qszsoz Zfzpz pt (VeI +V)

. 2|VP| [ (Vel? + V)} {@ sup(zn: £2)%

(25) P2

Ap  2|Vp|?
Ap | 2Vol®
p €p

+[Ca + Cs]p(|Vy|* + V).

}puw? V)

N

< Co[ o1Vl + V)]
Substituting (17), (18), and (21)—(25) into (16), we have

05 Crt g +a+ColplIVoP + V)] + (Co + Co)p( Vil + V)

2 —(1+H)?
_f%{ |V |2+V Zfz%'f'%——Zf“} .

(26)

Let y = p(|Vp|?+V) and z = >, fipi+3 >, fi.i —¢e. Then (19) implies that

(y—2)* = E(y—uZ) + MT_lyr

o = #12 (y— /w)2+(“;1)2y2+ 2(/; Yy - uz)
i 2 p—1 5 2b(p—1)
ZMQ(W +b) +(—u ) Y
1 -1 2b(p—1
:‘u (2t +b)2+(:u“u )2y2+ (l;2 )y

since ¢¥(p,tp) =0, y > 0, and y — pz > 0. Letting

20— — (1+ H)*e[u— (1 + H)?]
n(l—e)u2(1+ H)? ’

and combining (13), (26) and (27), we get

(28) Oy =

O<Cl+a+2—;—( —1)Cyy? + Cay?
(29) o
Cy + Cy — 2bCy )y — — (2 4 b2,
+(C2+C3 1)y (M—l)(2t0+ )
Consider —Ay? + By% + Cy, where A, B, C' are positive. Clearly
AP B Oy= Af Bt B o B B
(30) Ay® + By? + Cy = —Ay” + By Ay (C+4A) (C+4A)y.
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Applying (30) to (29) with
A= (M—1)04, B=C3, and C =Cy+ C35—2bCYy,

we conclude from (29) that

0<Ci+at b+ (CotC +C7§—2bc)
s 01 212 2 3 A(n - 1)Cy 4)Y
__G (20 4 py2
(31) (n—1) 2t
ny Cc3
<C — + (C2 + C3 + ————— — 2bC
< 1+“+2t3+( 2+ 05+ G, 1)y
Cy n?y? 2
— ———(—5 +b°).
TESART AR
If we choose b and « to be the constants as in (5), then we have
ny Cyi  n*y? 2
0<C — — ——(——= +b 0
< 1+“+2t3 (u—l)(4t3 +b%) <0,

which is a contradiction. Hence, ¢ < 0 in M x [0, 00). This completes the proof of
Theorem 1.1.
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