PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 7, Pages 2031–2038 S 0002-9939(00)05810-X Article electronically published on December 4, 2000

MINIMAL INDEX OF A C*-CROSSED PRODUCT BY A FINITE GROUP

JA A JEONG AND GIE HYUN PARK

(Communicated by David R. Larson)

ABSTRACT. Let $A \times_{\alpha} G$ be the C^* -crossed product of a simple unital C^* -algebra A by a finite group G. In this paper we show that the canonical conditional expectation from $A \times_{\alpha} G$ to A has the minimal index if $A \times_{\alpha} G$ is simple. It is also proved that if α is an outer action, then the canonical one is the unique conditional expectation of index-finite type from $A \times_{\alpha} G$ to A, while there are infinitely many conditional expectations when a nontrivial subgroup of G acts innerly on A.

1. Introduction

In [13], as a generalization of the index for subfactors by Jones ([4]) and Kosaki ([9]), Watatani introduced the notion of index for a pair of C^* -algebras $A \subset B$ with common unit when there exists a faithful conditional expectation $E: B \to A$ of index-finite type. It is shown that the index value $\operatorname{Index}(E)$ is a positive central element in B and the possible range is in the familiar set $\{4\cos^2 \pi/n: n=3,4,5,\cdots\} \cup [4,\infty)$ in the case where $\operatorname{Index}(E)$ is a scalar.

Hiai proved in [3, Theorem 1] that for a pair of factors $N \subset M$ if there is a conditional expectation E from M onto N with Index $(E) < \infty$, then there exists a unique one $E_0 \in \epsilon(M, N)$ (= the set of all faithful normal conditional expectations from M onto N) such that

$$\operatorname{Index}(E_0) \leq \operatorname{Index}(E), \quad E \in \epsilon(M, N)$$

and if the relative commutant $N' \cap M$ is non-trivial, then

$$\{ \operatorname{Index}(E) : E \in \epsilon(M, N) \} = [\operatorname{Index}(E_0), \infty).$$

The existence and the characterization, analogous to those in [3], for the conditional expectation on a C^* -algebra having the minimal index were shown in [13, Theorem 2.12.3]. Kajiwara and Watatani ([7]) also defined minimality for Hilbert C^* -bimodules and proved that tensor products of minimal bimodules are also minimal.

In this paper we consider the C^* -crossed product $A \times_{\alpha} G$ of a simple unital C^* -algebra A by an action α of a finite group G and show in section 3 that the canonical conditional expectation $E: A \times_{\alpha} G \to A$ defined by $E(\sum_g a_g u_g) = a_e$ is the minimal one when the crossed product $A \times_{\alpha} G$ is simple, particularly when α

Received by the editors May 3, 1999 and, in revised form, November 10, 1999.

 $^{2000\} Mathematics\ Subject\ Classification.\ Primary\ 46L05,\ 46L55.$

The first author was partially supported by GARC-KOSEF and BSRI.

is an outer action. In section 4 it is proved that the action α is outer if and only if there exists a unique conditional expectation of index-finite type from $A \times_{\alpha} G$ onto A.

2. Preliminaries

We refer to [13] for definitions and some basic facts on index theory of C^* -algebras. Let A be a C^* -subalgebra of a unital C^* -algebra B. We say that a map $E: B \to A$ is a conditional expectation if it is a positive faithful linear map of norm one satisfying

$$E(aba') = aE(b)a', \quad a, a' \in A, \ b \in B.$$

A finite family $\{(u_1, v_1), \dots, (u_n, v_n)\}$ in $B \times B$ is called a *quasi-basis* for E if

$$\sum_{i} u_i E(v_i b) = \sum_{i} E(bu_i) v_i = b \text{ for } b \in B.$$

A conditional expectation E is said to be of index-finite type if there exists a quasibasis for E. In this case the index of E is defined by

$$Index(E) = \sum_{i} u_i v_i.$$

Since it is always possible to find a quasi-basis of the form $\{(u_1, u_1^*), \ldots, (u_n, u_n^*)\}$ whenever E is of index-finite type, the index of E is a positive element. Note that the index value Index(E) does not depend on the choice of a quasi-basis and it is always contained in the center Z(B) of B. Hence the index is just a scalar whenever B has the trivial center, particularly when B is simple.

We denote the relative commutant $A' \cap B$ of A in B by $C_B(A)$ and the set of all conditional expectations $E: B \to A$ of index-finite type by $\epsilon_0(B, A)$ as in [13].

Theorem 2.1 ([13, Theorem 2.12.3]). Let $1 \in A \subset B$, where A and B have trivial centers. Suppose $\epsilon_0(B, A) \neq \emptyset$. Then the following hold.

(1) There exists a unique conditional expectation E_0 such that

$$\operatorname{Index}(E_0) \leq \operatorname{Index}(E), \quad E \in \epsilon_0(B, A).$$

(2) $E = E_0$ if and only if $E|_{C_B(A)}$ is a trace and $\sum_i u_i x u_i^* = c \cdot E(x)$ for $x \in C_B(A)$, where $\{(u_i, u_i^*)\}$ is a quasi-basis of E and c is the index of E.

(3) If
$$C_B(A) \neq \mathbb{C}$$
, then $\{\operatorname{Index}(E) : E \in \epsilon_0(B,A)\} = [\operatorname{Index}(E_0), \infty)$.

The second and third assertions together imply that there exists a unique conditional expectation of index-finite type from B onto A if and only if the relative commutant $C_B(A)$ is trivial. Index (E_0) is called the *minimal index* for a pair $A \subset B$ and denoted by $[B:A]_0$. The following multiplicativity of the minimal index was shown in [6].

Theorem 2.2 ([6, Theorem 3]). Let $1_C \in A \subset B \subset C$ be unital C^* -algebras with trivial centers. If $E: B \to A$ and $F: C \to B$ are conditional expectations of index finite type, then $E \circ F$ is minimal if and only if E and F are minimal. Moreover,

$$[C:A]_0 = [C:B]_0 \cdot [B:A]_0.$$

3. Minimal index

Let α be an action of a finite group G on a unital C^* -algebra A by automorphisms and $A \times_{\alpha} G$ its C^* -crossed product, that is, the universal C^* -algebra generated by A and the unitaries $\{u_g : g \in G\}$ with $\alpha(a) = u_g a u_g^*$ for $g \in G$ and $a \in A$. Then there exists a canonical conditional expectation $E : A \times_{\alpha} G \to A$ defined by

$$E(\sum_{g} a_g u_g) = a_e,$$

for $a_g \in A$ and $g \in G$, where e denotes the identity of the group G.

Lemma 3.1. Under the situation as above, the canonical conditional expectation E is of index-finite type with a quasi-basis $\{(u_g, u_g^*) : g \in G\}$ and $Index(E) = \sum_{g \in G} u_g u_g^* = |G|$, the order of G.

Recall that $[M_n(\mathbb{C}):\mathbb{C}]_0 = n^2$ ([13, Example 2.12.5]). In the following we show that the same value of minimal index is obtained for the pair $(M_n(A), A)$, where $M_n(A)$ is the matrix algebra with entries in a simple C^* -algebra A. To begin with, we prove that $\epsilon_0(M_n(A), A) \neq \emptyset$, where A is regarded as a unital C^* -subalgebra of $M_n(A)$ via the map $a \mapsto \{\delta_{i,j}a\}_{ij}$.

Lemma 3.2. Let A be a simple unital C^* -algebra. The canonical conditional expectation $E: M_n(A) \to A$ given by $E(\{a_{ij}\}) = 1/n \sum_i a_{ii}$ is of index-finite type and $Index(E) = n^2$.

Proof. Let $\{e_{ij}\}$ be the standard matrix units of $M_n(\mathbb{C})$. Let $v_{ij} = ne_{ji}$, $i, j = 1, \ldots, n$. Then $\{(e_{ij}, v_{ij})\}$ forms a quasi-basis for E. In fact, for each $x = \{x_{ij}\} \in M_n(A)$, write $x = \sum_{k,l} x_{kl} e_{kl}$. Then

$$e_{ij}E(v_{ij}x) = e_{ij}E(v_{ij}\sum_{k,l}x_{kl}e_{kl}) = e_{ij}E(n\sum_{l}x_{il}e_{jl}) = e_{ij}(x_{ij}\cdot 1),$$

so that $\sum_{i,j} e_{ij} E(v_{ij}x) = x$. Similarly one can show that $\sum_{i,j} E(xe_{ij})v_{ij} = x$, and $\operatorname{Index}(E) = \sum_{i,j} e_{ij}v_{ij} = n^2$ follows easily.

Lemma 3.3 ([3, Lemma 2.12.2]). For $E, F \in \epsilon_0(B, A)$, $E|_{C_B(A)} = F|_{C_B(A)}$ implies E = F.

Proposition 3.4. Let A be a simple unital C^* -algebra. Then the map $E: M_n(A) \to A$ defined by $E(\{a_{ij}\}) = 1/n \sum_i a_{ii}$ is the one with minimal index in $\epsilon_0(M_n(A), A)$.

Proof. For $n \geq 2$, the relative commutant $C_{M_n(A)}(A) \cong M_n(\mathbb{C})$ is nontrivial, so that there are infinitely many conditional expectations. Let τ be the normalized canonical faithful trace from $M_n(\mathbb{C})$ onto \mathbb{C} , which is the restriction of E to the relative commutant $C_{M_n(A)}(A)$. If F is the minimal conditional expectation from $M_n(A)$ to A, then $\rho = F|_{C_{M_n(A)}(A)}$ must be a normalized trace on $C_{M_n(A)}(A)$ by Theorem 2.1(2). Since there exists a unique normalized trace on $C_{M_n(A)}(A)$ ($\cong M_n(\mathbb{C})$), we see that $\tau = \rho$, i.e., $E|_{C_{M_n(A)}(A)} = F|_{C_{M_n(A)}(A)}$, and this proves the assertion by Lemma 3.3.

Let $E: B \to A$ be a conditional expectation. Then $\mathcal{E}_0 = B$ can be viewed as a right pre-Hilbert A-module with an A-valued inner product $\langle x, y \rangle := E(x^*y), \ x, y \in B$, and its completion \mathcal{E} with respect to the norm induced by the inner product is a right Hilbert A-module. If E is of index-finite type, then \mathcal{E}_0 is complete ([7,

Lemma 1.11]). It is well known that the set $\mathcal{L}_A(\mathcal{E})$ of all adjointable A-module homomorphisms $T: \mathcal{E} \to \mathcal{E}$ becomes a C^* -algebra in the usual operator norm $||T|| = \sup\{||T\xi|| : ||\xi|| = 1\}$. Each element $b \in B$ acts on $\mathcal{E}_0 = B$ by left multiplication $\lambda(b)$, which extends to \mathcal{E} so that the map $\lambda: B \to \mathcal{L}_A(\mathcal{E})$ is injective. For $x \in \mathcal{E}_0$, define $e_A(x) := E(x) \in B = \mathcal{E}_0$. Then e_A extends to \mathcal{E} since $||e_A|| \le 1$ and it turns out to be a projection in $\mathcal{L}_A(\mathcal{E})$. The C^* -subalgebra $C^*(B, e_A)$ of $\mathcal{L}_A(\mathcal{E})$ generated by $\{\lambda(x)e_A\lambda(y): x, y \in B\}$ is called the C^* -basic construction. If E is of index-finite type, then $C^*(B, e_A)$ is exactly the whole algebra $\mathcal{L}_A(\mathcal{E})$. Since λ is injective, we simply write x for $\lambda(x)$, $x \in B$.

Let G be a finite group and α be an action of G on a simple unital C^* -algebra A for which the crossed product $B = A \times_{\alpha} G$ is simple. It is known in [13, p. 106] that if $\{u_g\}_{g \in G}$ is the family of unitaries implementing $\{\alpha_g\}_{g \in G}$, then the element $p = (p_{gh}) \in M_n(A), n = |G|, p_{gh} = E(u_g^*u_h)$, is a projection. Furthermore the map

is an isomorphism. Note that π is surjective since

$$p_{gh} = E(u_q^* u_h) = E(u_{q^{-1}h}) = \delta_{g,h} \cdot 1,$$

and so $p = \sum_{g \in G} e_{gg} = 1$, the identity matrix, where $\{e_{gh}\}$ is the usual matrix unit for $M_n(\mathbb{C})$. Now let $E_B : C^*(B, e_A) \to B$ be the dual conditional expectation of the canonical map $E : B = A \times_{\alpha} G \to A$ defined by

$$E_B(xe_Ay) = |G|^{-1}xy, \ x, y \in B;$$

then it turns out to be of index-finite type with $Index(E_B)=Index(E)$ ([13, Proposition 2.3.4]). From [13, Proposition 1.7.1] we also see that

$$\operatorname{Index}(E \circ E_B) = \operatorname{Index}(E)\operatorname{Index}(E_B) = n^2,$$

where $E \circ E_B : C^*(B, e_A) \to A$ is the composition of E and E_B . Note that for $x = \sum_{k \in G} x_k u_k, \ y = \sum_{l \in G} y_l u_l \in B$,

$$(E \circ E_B)(xe_A y) = E(n^{-1} xy) = n^{-1} E(\sum_{k,l} x_k \alpha_k(y_l) u_{kl}) = \sum_{g \in G} x_g \alpha_g(y_{g^{-1}}).$$

On the other hand, $\pi(xe_Ay) = (E(u_g^*x)E(yu_h))_{gh} = (\alpha_{g^{-1}}(x_g)y_{h^{-1}})_{gh} \in M_n(A)$. Define a map $F: M_n(A) \to A$ by

$$F((a_{gh})_{gh}) = n^{-1} \sum_{g \in G} \alpha_g(a_{gg}) \in A,$$

where we regard A as a unital C^* -subalgebra of $M_n(A)$ by the map

$$\psi: a \mapsto \sum_{g \in G} \alpha_{g^{-1}}(a) e_{gg}.$$

Then it is easy to see that F is a conditional expectation from $M_n(A)$ onto A. Moreover the above calculation shows that $F \circ \pi = E \circ E_B$, and hence F is of index-finite type and Index $(F) = n^2$. In fact, $\{(\sqrt{n}e_{gh}, \sqrt{n}e_{hg})\}_{g,h}$ forms a quasibasis for F since, for $x = (a_{gh})_{gh} \in M_n(A)$,

$$\sqrt{n}e_{gh}F(\sqrt{n}e_{hg}(a_{kl})_{kl})) = ne_{gh}F(e_{hg}\sum a_{kl}e_{kl})$$

$$= ne_{gh}F(\sum_{l}a_{gl}e_{hl})$$

$$= e_{gh}\psi(\alpha_{h}(a_{gh})) = a_{gh}e_{gh},$$

so $\sum_{g,h} \sqrt{n}e_{gh}F(\sqrt{n}e_{hg}x) = \sum_{gh} a_{gh}e_{gh} = x$. The following lemma slightly generalizes Proposition 3.4.

Lemma 3.5. Let α be an action of a finite group G on a simple unital C^* -algebra A. Then the conditional expectation $F: M_n(A) \to A$ defined above has the minimal index, where each element $a \in A$ is identified with a diagonal matrix $(\alpha_{g^{-1}}(a))_{gg}$, so that A is a C^* -subalgebra of $M_n(A)$ with the common unit.

Proof. Let $(a_{gh})_{gh} \in C_{M_n(A)}(A)$. Then we have

$$(a_{gh})_{gh}(\alpha_{q^{-1}}(a))_{gg} = (\alpha_{q^{-1}}(a))_{gg}(a_{gh})_{gh}, \ a \in A.$$

A simple calculation shows that $a_{gg} \in Z(A) = \mathbb{C} \cdot 1$ for each $g \in G$ and the relative commutant $C_{M_n(A)}(A)$ contains the diagonal scalar matrices $\sum_{g \in G} \lambda_g e_{gg}$, $\lambda_g \in \mathbb{C}$, so $C_{M_n(A)}(A)$ is non-trivial and there exist infinitely many conditional expectations from $M_n(A)$ onto A. But the restriction $F|_{C_{M_n(A)}(A)}$ coincides with the normalized trace by definition. Furthermore, for the quasi-basis $\{(\sqrt{n}e_{gh}, \sqrt{n}e_{hg})\}_{g,h}$ of F and for each $z = (z_{kl})_{k,l} \in C_{M_n(A)}(A)$,

$$\sum_{g,h} (\sqrt{n}e_{gh})z(\sqrt{n}e_{hg}) = \sum_{g,h} nz_{hh}e_{gg} = \sum_g n(\sum_h z_{hh})e_{gg},$$

which is identified with an element $\sum_{h} nz_{hh} \in A \ (z_{hh} \in \mathbb{C})$. On the other hand,

$$\sum_{h} nz_{hh} = n^2 \cdot \frac{1}{n} \sum_{h} z_{hh} = n^2 F(z) = \operatorname{Index}(F)F(z).$$

Therefore by Theorem 2.1(2), F is the minimal conditional expectation.

Recall that if A is simple unital and α is an outer action of a finite group, then the crossed product $A \times_{\alpha} G$ is always simple ([8]), while the converse is not true in general; Connes shows in [1] that, for each number p and each p-th root of unity γ , there is an automorphism α of the UHF-algebra $\bigotimes M_p$ such that the period of α is pk, k is the order of γ , and α^p is inner, for which the crossed product $\bigotimes M_p \times_{\alpha} \mathbb{Z}_{pk}$ is simple.

Theorem 3.6. Let A be a simple unital C^* -algebra and α be an action of a finite group G on A for which the crossed product $A \times_{\alpha} G$ is simple. Then the canonical conditional expectation $E: A \times_{\alpha} G \to A$ defined by $E(\sum a_g u_g) = a_e$ is minimal.

Proof. We have seen that the composition $E \circ E_B$ is a conditional expectation of index-finite type from $C^*(B, e_A)$ onto A, and $E \circ E_B = F \circ \pi$, where $B = A \times_{\alpha} G, \pi : C^*(B, e_A) \to M_n(A)$ is an isomorphism and F is the expectation discussed in the above lemma. Since F has the minimal index, by Theorem 2.2, E and E_B must be the minimal ones, respectively.

4. Outer actions and uniqueness of conditional expectations

As noted in the paragraph following Theorem 2.1, if $\epsilon_0(B,A) \neq \emptyset$ there exists a unique conditional expectation from B onto A if and only if the relative commutant $C_B(A)$ is trivial. In fact, if $E, F \in \epsilon_0(B,A)$ and $\{(u_i,v_i): i=1,\ldots,n\}$ is a quasibasis for E, then there exists a unique invertible element $h \in C_B(A)$ with E(h) = 1 such that F(x) = E(xh) for each $x \in B$. Furthermore, in this case $\{(u_i, h^{-1}v_i)\}$ is a quasi-basis for F (= E_h) (see [13]).

Remark 4.1. If α_g is an inner automorphism for each $g \in G$, then it is known ([2, IIC]) that the map

$$au_q \mapsto av_q \otimes \lambda_q : A \times_{\alpha} G \to A \otimes C^*(G), \ a \in A, g \in G,$$

is an isomorphism, where $\{\lambda_g\}$ are the unitaries generating $C^*(G)$ and $\{v_g\}$ are unitaries in A with $\alpha_g(a) = v_g a v_g^*$, $a \in A$. Thus the relative commutant $C_{A \times_{\alpha} G}(A)$ is isomorphic to $Z(A) \otimes C^*(G)$, so nontrivial if |G| > 1. Therefore there are infinitely many conditional expectations from the crossed product $A \times_{\alpha} G$ onto A in case α is an inner action.

If G has a nontrivial subgroup $H = \{h \in G : \alpha_h \text{ is an inner automorphism of } A\}$, then the restriction map $E_H : A \times_{\alpha} G \to A \times_{\alpha} H$ given by $E_H(\sum_{g \in G} a_g u_g) = \sum_{h \in H} a_h u_h$ is a conditional expectation by [10, Proposition 3.1]. Furthermore E_H is of index-finite type by [10, Theorem 3.4] since G is a finite group. As discussed in the preceding paragraph there are infinitely many conditional expectations from $A \times_{\alpha} H (\cong A \otimes C^*(H))$ onto A and their compositions with E_H give infinitely many conditional expectations of index-finite type from $A \times_{\alpha} G$ onto A.

Now, we consider outer actions of finite groups. The condition that the crossed product $A \times_{\alpha} G$ is simple is necessary for outerness of the action α in general. In the following we prove an equivalent condition for outerness of α . If H is a subgroup of G, then we simply denote the action α restricted to H by α again.

Proposition 4.2. Let α be an action of a finite group G on a simple unital C^* -algebra A. Then α is an outer action if and only if for each cyclic subgroup H of G the crossed product $A \times_{\alpha} H$ is simple.

Proof. The simplicity of the crossed product for each subgroup when α is outer follows from [8]. For the converse suppose α_h is an inner automorphism for some $h \in G \setminus \{e\}$. Then $A \times_{\alpha} H \cong A \otimes C^*(H)$ by Remark 4.1, where H is the cyclic subgroup of G generated by h and so cannot be simple because $A \otimes C^*(H) \cong A \otimes C(\hat{H}) \cong A \otimes C(\hat{H}) \cong A \otimes C(\hat{H})$.

Let α be an action of a finite abelian group G on a simple unital C^* -algebra A. Recall that the *dual action* $\hat{\alpha}$ of the dual group \hat{G} of G on the C^* -crossed product $A \times_{\alpha} G$ is defined by

$$\hat{\alpha}_{\sigma}(\sum_{g}a_{g}u_{g})=\sum_{g}a_{g}\langle\sigma,g\rangle u_{g},\ a_{g}\in A,\ g\in G,\ \sigma\in \hat{G},$$

where $\langle \sigma, g \rangle$ is the evaluation of σ at g. If α is an outer action, then the crossed product $A \times_{\alpha} G$ is simple and furthermore by Takai duality we see that the double crossed product $(A \times_{\alpha} G) \times_{\hat{\alpha}} \hat{G} \cong M_n(A)$, n = |G|, is also simple. So the dual action $\hat{\alpha}$ of \hat{G} gives the simple crossed product $B \times_{\hat{\alpha}} \hat{G}$, where $B = A \times_{\alpha} G$. From [12, Theorem 8.10.10, 8.10.12] it follows that for a cyclic group \mathbb{Z}_p of prime order

an action β of \mathbb{Z}_p on a simple unital C^* -algebra B is outer if and only if the crossed product $B \times_{\beta} \mathbb{Z}_p$ is simple. More generally, this is true for a finite abelian group G whose order is the product of distinct primes ([11, Theorem 5]) though this is not true in general as discussed before Theorem 3.6. Therefore if α is an outer action of \mathbb{Z}_p on a simple unital C^* -algebra A, then its dual $\beta = \hat{\alpha}$ of $\hat{\mathbb{Z}}_p (\cong \mathbb{Z}_p)$ should act outerly on the crossed product $B = A \times_{\alpha} \mathbb{Z}_p$ since B is simple and its crossed product $B \times_{\beta} \hat{\mathbb{Z}}_p$ is isomorphic to the simple C^* -algebra $M_p(A)$. More generally, it follows from the proof of Theorem 4.4 below that the dual action of an outer action by a finite abelian group is always outer.

Lemma 4.3 ([12, Proposition 8.10.13]). Let β be an action of a finite abelian group on a simple unital C^* -algebra B. Then $\beta_g \neq id$ is an outer automorphism if and only if $C_B(B^{\beta}) = \mathbb{C} \cdot 1$.

If α is an outer action of a finite group G on a simple unital C^* -algebra A, then the conditional expectation

$$E_{\alpha}: A \to A^{\alpha}, \ E_{\alpha}(a) = \frac{1}{|G|} \sum_{a} \alpha_g(a)$$

is of index-finite type by [13, Proposition 2.8.6] since $A \times_{\alpha} G$ is simple. Moreover, by the above lemma if G is abelian, there is no conditional expectation of index-finite type from A onto A^{α} other than E_{α} since $C_A(A^{\alpha}) = \mathbb{C} \cdot 1$. On the contrary if $G = K \times H$ is a finite abelian group, K acts outerly and H acts trivially on A, then $C_A(A^{\alpha}) = C_A(A^{\alpha|K}) = \mathbb{C} \cdot 1$. Thus there exists a unique conditional expectation of index-finite type from A onto A^{α} , the canonical one, even though the action α is not outer.

While outerness of the action is strictly stronger than the uniqueness of conditional expectation from A onto A^{α} as we have seen above, in the following we prove that the outerness of the action α is equivalent to the uniqueness of the conditional expectation of index-finite type from $A \times_{\alpha} G$ onto A.

Theorem 4.4. Let α be an action of a finite group G on a simple unital C^* -algebra A, and $E: A \times_{\alpha} G \to A$ be the canonical conditional expectation. Then α is an outer action if and only if $\epsilon_0(A \times_{\alpha} G, A) = \{E\}$.

Proof. If α is not outer, then there are infinitely many conditional expectations by Remark 4.1.

For the converse suppose that α is an outer action. We first assume that the group G is abelian. It is enough to show that the relative commutant $C_{A\times_{\alpha}G}(A)$ is trivial. Let $B:=A\times_{\alpha}G$. If $x=\sum_{g\in G}x_gu_g\in C_B(A)$, then, for any $a\in A$, we have

$$xa = \sum x_g u_g a = \sum x_g \alpha_g(a) u_g = \sum a x_g u_g = ax.$$

Thus for each $g \in G$, $x_g \alpha_g(a) = ax_g$, $a \in A$. Then $x_g a = ax_g$, $a \in A^{\alpha}$, and hence $x_g \in C_A(A^{\alpha})$. Note that the relative commutant $C_A(A^{\alpha})$ is trivial by Lemma 4.3. Hence $x_g \in \mathbb{C} \cdot 1$, $g \in G$. The outerness of α also implies that, for each $g \neq e$, there exists an element $a \in A$ with $a \neq \alpha_g(a)$, and then from the identity $x_g \alpha_g(a) = ax_g$, $x_g \in \mathbb{C} \cdot 1$, it follows that $x_g = 0$. Therefore $C_B(A) = \mathbb{C} \cdot 1$.

For an arbitrary finite group G let F be a conditional expectation in $\epsilon_0(A \times_{\alpha} G, A)$. To show F = E it is enough to prove that their restrictions to each subalgebra $A \times_{\alpha} H$ coincide, where H is a cyclic subgroup of G. Note that $\alpha|_H$ is outer.

Then $C_{A\times_{\alpha}H}(A) = \mathbb{C} \cdot 1$ and the restrictions $F|_{A\times_{\alpha}H}$, $E|_{A\times_{\alpha}H}$ are of index-finite type by [13, Proposition 2.10.2]. But $\epsilon_0(A\times_{\alpha}H,A) = \{E|_{A\times_{\alpha}H}\}$ by the above argument in the case of an abelian group, so that $F|_{A\times_{\alpha}H} = E|_{A\times_{\alpha}H}$.

Remarks 4.5. (a) The theorem can be shown directly using the following fact: Let α be an action of a finite group G on a simple unital C^* -algebra A. Then the following three conditions are equivalent: (1) α is outer. (2) For $g \neq e$, α_g is free in the sense of Kallman ([5]), that is, $ab = \alpha_g(b)a$ for all $b \in A$ implies a = 0. (3) The relative commutant $C_{A \times_{\alpha} G}(A)$ is trivial. The proof is similar to the case where A is a factor.

(b) If G is abelian in Theorem 4.4, then it is easy to see that the fixed point algebra $B^{\hat{\alpha}}$ for the dual action $\hat{\alpha}$ is A. Thus if α is an outer action, then $C_B(B^{\hat{\alpha}}) = \mathbb{C} \cdot 1$. Since each automorphism $\hat{\alpha}_{\sigma}$ ($\sigma \neq \hat{e}$, the identity of \hat{G}) acts nontrivially on B by the definition of dual action, it follows from Lemma 4.3 that $\hat{\alpha}$ is also outer.

References

- [1] A. Connes, Periodic automorphism of the hyperfinite factor of type II₁, Acta Sci. math. 39(1977), 39–66. MR **56**:6411
- [2] A. Connes, Noncommutative geometry, Academic Press, 1994. MR 95j:46063
- [3] F. Hiai, Minimizing indices of conditional expectations onto a subfactor, Publ. RIMS, Kyoto Univ. 24(1988), 673-678. MR 90a:46157
- [4] V. Jones, Index for subfactors, Invent. Math. 72(1983), 1–25. MR 84d:46097
- [5] R. R. Kallman, A generalization of free action, Duke Math. J. 36(1969), 781-789. MR 41:838
- [6] S. Kawakami and Y. Watatani, The multiplicativity of the minimal index of simple C*-algebras, Proc. Amer. Math. Soc. 123(1995), 2809–2813. MR 95k:46093
- [7] T. Kajiwara and Y. Watatani, Jones index theory by Hilbert C*-bimodules and K-theory, Tran. Amer. Math. Soc. to appear. CMP 98:13
- [8] A. Kishimoto, Outer automorphisms and related crossed products of simple C*-algebras, Comm. Math. Phys. 81(1981), 429–435. MR 83c:46061
- [9] H. Kosaki, Extensions of Jones' theory on index to arbitrary factors, J. Func. Anal. 66(1986), 123–140. MR 87g:46093
- [10] M. Khoshkam, Hilbert C*-modules and conditional expectations on crossed products, J. Austral. Math. Soc. (Series A) 61(1996), 106–118. MR 97i:46100
- [11] D. Olesen, G. K. Pedersen, E. Stormer, Compact abelian groups of automorphisms of simple C*-algebras, Invent. math. 39 (1977), 55–64. MR 55:13250; Appendix MR 55:13251
- [12] G. K. Pedersen, C*-algebras and their automorphism groups, Academic Press, 1979. MR 81e:46037
- [13] Y. Watatani, Index for C*-subalgebras, Memoirs of the Amer. Math. Soc. 83 (1990). MR 90i:46104

Division of Liberal Arts, Myongji University, Yongin, 449–728, Korea

 $\it Current\ address$: BK21 Mathematical Sciences Division, Seoul National University, Seoul, 151-742 Korea

E-mail address: jajeong@math.snu.ac.kr

DEPARTMENT OF MATHEMATICS, HANSHIN UNIVERSITY, OSAN, 447–791, KOREA

E-mail address: ghpark@hucc.hanshin.ac.kr