PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 7, Pages 1907–1913 S 0002-9939(00)05827-5 Article electronically published on December 4, 2000

ON CLASSIFICATION OF POLARIZED VARIETIES WITH NON-INTEGRAL NEF VALUES

YICAI ZHAO

(Communicated by Ron Donagi)

ABSTRACT. Let M be an n-dimensional normal projective variety with only Gorenstein, terminal, \mathbb{Q} -factorial singularities. Let L be an ample line bundle on M. Let τ denote the nef value of (M, L). The classification of (M, L) via the nef value morphism is given for the situations when τ satisfies $n-3 < \tau < n-2$ or $n-4 < \tau < n-3$.

INTRODUCTION

Let M be an *n*-dimensional normal projective variety with only \mathbb{Q} -Gorenstein, terminal singularities and let L be an ample line bundle on M. K_M denotes the canonical divisor, or the canonical sheaf of M. Assume that K_M is not nef. The nef value of (M, L) is a real number defined as $\tau = \min\{r \in \mathbb{R}, K_M + rL \text{ is nef}\}$.

By the Kawamata Rationality Theorem, τ is a rational number and by the Kawamata-Shokurov Base Point Free Theorem, $|m(K_M + \tau L)|$ is base point free for $m \gg 0$, and defines a projective surjective morphism $\varphi \colon M \to X$ onto a normal variety X. φ is called the nef value morphism.

Sommese [S] and Beltrametti and Sommese [BS1] establish and develop the theory of the adjunction theoretic classification of projective varieties. The pairs (M, L)with the nef value $\tau = n - 1$, n - 2, or $n - 2 < \tau < n - 1$ have been classified in [BS1], [An] and [F2].

This paper studies the pairs (M, L) such that $n - 3 < \tau < n - 2$ or $n - 4 < \tau < n - 3$. We give out the adjunction theoretic classification for these polarized varieties.

0. Preliminaries

We work over the complex field \mathbb{C} . Throughout this paper, the notions and notations coincide with that in [BS1]. A variety means an irreducible and reduced projective scheme.

We begin by recalling some facts from adjunction theory and Mori theory. We refer for that to [BS1], [KMM] and [Mo].

In this paper, let M be a normal projective variety of dimension $n \ge 2$, and let L be an ample line bundle on M.

O2000 American Mathematical Society

Received by the editors September 14, 1998 and, in revised form, November 1, 1999.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14Jxx.

Key words and phrases. Nef value morphism, ample line bundle, projective variety.

YICAI ZHAO

(0.1)**Kawamata Rationality Theorem**([KMM, (4-1-1)]). Let M be a normal variety of dimension n with terminal singularities and let r be the index of M. Let $f: M \to S$ be a projective morphism onto variety S. Let L be an f-ample line bundle on M. If K_M is not f-nef, then $\tau = \min\{r \in \mathbb{R}, K_M + rL \text{ is } f$ -nef $\}$ is a positive rational number. Furthermore expressing $r\tau = u/v$ with u, v positive coprime integers, we have $u \leq r(b+1)$ where $b = \max\{\dim f^{-1}(s), s \in S\}$.

(0.2)**Theorem**([BS1, (0.2.3)]). Let T be the locus of terminal singularities on M. Then $\operatorname{cod}_M T \ge 3$.

(0.3)**Special varieties**([BS1]). Let M be an n-dimensional normal projective variety with Gorenstein singularities. We say that (M, L) is a *Del Pezzo* variety (resp. a *Mukai* variety) if $K_M \approx -(n-1)L$ (resp. $K_M \approx -(n-2)L$); (M, L) is a *scroll* (resp. a *quadric* variety) if $K_M \approx -(n-1)L$ (resp. $K_M \approx -(n-2)L$); (M, L) is a *scroll* (resp. a *quadric fibration*; resp. a *Del Pezzo fibration*; resp. a *Mukai fibration*) over a normal variety X of dimension m if there exists a surjective morphism with connected fibers $\varphi \colon M \to L$ such that $K_M + (n - m + 1)L \approx \varphi^*H$ (resp. $K_M + (n - m)L \approx \varphi^*H$; resp. $K_M + (n - m - 1)L \approx \varphi^*H$) for some ample line bundle H on X. Here \approx denotes the linearly equivalence relation.

(0.4)Kobayashi-Ochiai Theorem([F1, (2,2), (2.3)]). Let M be an n-dimensional normal projective variety and let L be an ample line bundle on M. Then

- (i) $(M, L) \cong (\mathbb{P}^n, O_{\mathbb{P}^n}(1))$ if $K_M + (n+1)L \sim O_M$.
- (ii) $(M, L) \cong (Q^n, O_{Q^n}(1)), Q^n$ is a hyperquadric in \mathbb{P}^{n+1} , if $K_M + nL \sim O_M$. Here \sim denotes the numerically equivalence relation.

(0.5)**Theorem**([BS1, (2.3)]). Let M be an n-dimensional irreducible normal projective variety with terminal singularities and let L be an ample line bundle on M. Assume that X is \mathbb{Q} -factorial and that $K_M + nL$ is nef and big. Then $K_M + nL$ is ample.

(0.6)**Theorem**([Ma, (2.1)]). Let M be an n-dimensional normal projective variety with only terminal singularities. Let L be an ample line bundle on M. Then $K_M + nL$ is nef unless $(M, L) \cong (\mathbb{P}^n, O_{\mathbb{P}^n}(1))$. In particular, $K_M + (n+1)L$ is always nef and is ample unless $(M, L) \cong (\mathbb{P}^n, O_{\mathbb{P}^n}(1))$.

(0.7)**Theorem**([BS1, (0.8.3)]). A rational number τ is the nef value of (M, L) if and only if $K_M + \tau L$ is nef but not ample.

1. Classifications of polarized varieties

The following lemma is needed in the sequel.

(1.1)**Lemma.** Let M be an n-dimensional normal projective variety with Gorenstein, terminal, \mathbb{Q} -factorial singularities, and let L be an ample line bundle on M. Let τ be the nef value of (M, L). By the Kawamata rationality theorem, r = u/v with u, v positive coprime integers. Assume that $n - k < \tau < n - k + 1$ for some positive integer k < n. Then

- (i) $n \leq 2k$, and if n = 2k then $(M, L) \cong (\mathbb{P}^n, O_{\mathbb{P}^n}(2))$;
- (ii) $2 \le v \le \frac{n}{n-k}$ and $\tau = n-k+\frac{i}{v}$ for some positive integer i < v and i, v coprime.

1908

Proof. From the assumption, we see that r = u/v is not an integer and thus $v \ge 2$. By the Kawamata rationality theorem, we have that $u \leq n+1$, and thus v(n-k) < 0 $u \leq n+1$ or $v(n-k) \leq n$. It follows that $2 \leq v \leq \frac{n}{n-k}$. Moreover, since v(n-k) < u < v(n-k) + v, we get that $\tau = n - k + \frac{i}{v}$ for some positive integer $i \leq v$. Note that u = v(n-k) + i. If i, v are not coprime, then u, v are not coprime, a contradiction. Hence we find (1.1), (ii).

Let $\varphi \colon M \to X$ be the nef value morphism of (M, L). Suppose n = 2k. By the above and the Kawamata rationality theorem, we have

$$u = vk + i \le \max_{x \in X} \{\dim \varphi^{-1}(x)\} + 1 \le 2k + 1.$$

Since $v \ge 2$ and $i \ge 1$, it follows that u = 2k+1 and v = 2. Thus dim $\varphi^{-1}(x) = n$ for some $x \in X$, that is, φ contracts M to a point. We have $2K_M + (n+1)L \approx O_M$. By [BS1, (0.11)] there exists an ample line bundle A on M such that $K_M \approx$ -(n+1)A and $L \approx 2A$. By the Kobayashi-Ochiai Theorem (0.4), $(M, A) \cong$ $(\mathbb{P}^n, P_{\mathbb{P}^n}(1))$ and thus $(M, L) \cong (\mathbb{P}^n, O_{\mathbb{P}^n}(2)).$

The main results of this paper are as follows.

(1.2) **Theorem.** Let M be a normal projective variety of dimension $n \geq 5$ with Gorenstein, terminal, \mathbb{Q} -factorial singularities. Let L be an ample line bundle on M. Let τ denote the nef value of (M, L) and $\varphi \colon M \to X$ the nef value morphism of (M, L), and let F be any general fiber of φ . Assume that $n - 4 < \tau < n - 3$. Then (M, L) must be one of the following.

- (i) n = 8, τ = ⁹/₂, (M, L) ≅ (ℙ⁸, O_{ℙ⁸}(2));
 (ii) n = 7, τ = ⁷/₂, either (M, L) ≅ (Q⁷, O_{Q⁷}(2)) or M is a ℙ⁶-bundle over a curve under φ and (F, L_F) ≅ (ℙ⁶, O_{ℙ⁶}(2);
- (iii) $n = 6, \tau = \frac{5}{2}, A := K_M + 3L$ is ample on M. (M, A) is one of the following: a) a Del Pezzo variety and $L \approx 2A$;
 - b) a quadric fibration over a curve, and $(F, L_F) \cong (Q^5, O_{Q^5}(2));$
 - c) a scroll over a surface, and $(F, L_F) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(2));$
 - d) $2K_M + 5L$ is nef and big, φ contracts disjoint divisors E to smooth points, and each $(E, L_E) \cong (\mathbb{P}^5, O_{\mathbb{P}^5}(2));$
- (iii') $n = 6, \tau = \frac{7}{3}, (M, L) \cong (\mathbb{P}^6, O_{\mathbb{P}^6}(3));$
- (iv) $n = 5, \tau$ is either $\frac{6}{5}, \frac{5}{4}, \frac{5}{3}, \frac{4}{3}, \text{ or } \frac{3}{2}$. For $\tau = \frac{6}{5}, (M, L) \cong (\mathbb{P}^5, O_{\mathbb{P}^5}(5));$

For $\tau = \frac{5}{4}$, $(M,L) \cong (Q^5, O_{Q^5}(4))$, or (M,A) is a scroll over a curve for some ample line bundle A on M and $(F, L_F) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(4));$

For $\tau = \frac{5}{3}$, $(M,L) \cong (Q^5, O_{Q^5}(3))$, or (M,A) is a scroll over a curve for some ample line bundle A on M and $(F, L_F) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(3));$

For $\tau = \frac{4}{3}$, $A := 2K_M + 3L$ is ample on M, (M, A) is one of the following: a) a Del Pezzo variety with $L \approx 3A$;

- b) a quadric fibration over a curve with $(F, L_F) \cong (Q^4, O_{Q^4}(3));$
- c) a scroll over a surface with $(F, L_F) \cong (\mathbb{P}^3, O_{\mathbb{P}^3}(3))$; or
- d) $3K_M + 4L$ is nef and big, and φ contracts disjoint divisors E to points and each $(E, L_E) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(3)).$

For $\tau = \frac{3}{2}$, $A := K_M + 2L$ is an ample line bundle on M, (M, A) is either a Mukai variety with $L \approx 2A$, a Del Pezzo fibration over a curve, a quadric fibration over a surface, a scroll over a 3-dimensional variety, or $2K_M + 3L$ is nef and big, φ contracts disjoint divisors E to curves or points, the structure of each E is as follows.

- a) if $\varphi(E)$ is a point, then (E, L_E) is $(\mathbb{P}^4, O_{\mathbb{P}^4}(2))$, or $(Q^4, O_{Q^4}(2))$;
- b) if $\varphi(E)$ is a curve, then $(F, L_F) \cong (\mathbb{P}^3, O_{\mathbb{P}^3}(2))$.

Proof. By Lemma (1.1), $n \leq 8$ and when n = 8, $(M, L) \cong (\mathbb{P}^8, O_{\mathbb{P}^8}(2))$. Moreover,

from the proof of Lemma (1.1), we have $\tau = \frac{9}{2}$, as in (1.2) (i). (ii) Let n = 7. By Lemma (1.1), $2 \le v \le \frac{7}{3}$. Thus v = 2 and by Lemma (1.1) again $\tau = 7 - 4 + \frac{1}{2} = \frac{7}{2}$, and so u = 7. By Kawamata Rationality Theorem (0.1), we have $7 \le \max_{x \in X} \{\dim \varphi^{-1}(x)\} + 1 \le 8 \text{ or } 6 \le \max_{x \in X} \{\dim \varphi^{-1}(x)\} \le 7.$

Suppose $\max_{x \in X} \{\dim \varphi^{-1}(x)\} = 7$; then φ contracts M to a point, and we have $2K_M + 7L \approx O_M$. By [BS1, (0.11)], there exists an ample line bundle A on M such that $K_M \approx -7A$ and $L \approx 2A$. By the Kobayashi-Ochiai Theorem (0.4), we get that $(M, A) \cong (Q^7, O_{Q^7}(1))$. Hence $(M, L) \cong (Q^7, O_{Q^7}(2))$.

Suppose $\max_{x \in X} \{\dim \varphi^{-1}(x)\} = 6$; then $\dim X \ge 1$. We claim that $\dim X = 1$. Indeed, otherwise, assume that $d := \dim X \ge 2$. First, let d < n. Let F be a general fiber of $\varphi: M \to X$. Then dim $F \leq 5$. Since $\tau = \frac{7}{2}$, we have $2K_F + \frac{7}{2}$ $7L_F \approx O_F$. By [BS1, (0.11)], there exists an ample line bundle A on F such that $K_F + 7A \approx O_F$ and $7 \leq \dim F + 1 \leq 6$, a contradiction. Second, let d = n. Then $2K_M + 7L$ is nef and big. Write $K_M + 7(K_M + 4L) = 4(2K_M + 7L)$. Then $A := K_M + 4L$ is an ample line bundle on M, and $K_M + 7A$ is nef and big but not ample. However, by Theorem (0.5), $K_M + 7A$ is ample. We get a contradiction.

Now, we have that $\operatorname{cod}_M \operatorname{Sing}(M) \geq 3 > \dim X$ by Theorem (0.2) and that $u = \max_{x \in X} \{\dim \varphi^{-1}(x)\} + 1 = 7$. By [BS2, (1.4)], M is a \mathbb{P}^6 -bundle over a curve X under φ . Finally, for any general fiber F of φ , we have $2K_F + 7L_F \approx O_F$. Note that $F \cong \mathbb{P}^6$ and $K_M \cong O_{\mathbb{P}^6}(-7)$. We get that $(F, L_F) \cong (\mathbb{P}^6, O_{\mathbb{P}^6}(2))$, as in (1.2) (ii).

(iii) Let n = 6. By Lemma (1.1), $2 \le v \le \frac{6}{6-4} = 3$, so v = 2 or v = 3. Let v = 2 and $\tau = \frac{u}{v} = 6 - 4 + \frac{1}{2} = \frac{5}{2}$. Write $K_M + 5(K_M + 3L) = 3(2K_M + 5L)$. Then $A := K_M + 3L$ is an ample line bundle on M.

First, assume that $\varphi \colon M \to X$ has lower dimensional image. If dim X = 0, then $K_M + 5A \approx O_M$ and $L \approx 2A$. By definition (0.3), (M, A) is a Del Pezzo variety.

Let dim $X \ge 1$, and let F be any general fiber of φ . Since $2K_M + 5L_M \approx \varphi^* H$ for some ample line bundle H on X by [KMM, (3-2-1)], $K_M + 5A \approx \varphi^*(3H)$.

If dim X = 1, (M, A) is a quadric fibration over X under φ by definition. Moreover, $K_F + 5A_F \approx O_F$. Since dim F = 5, $(F, A_F) \cong (Q^5, O_{Q^5}(1))$ by (0.4) [F1]. Note that $K_F \cong O_{Q^5}(-t)$ and $2K_F + 5L_F \cong O_F$. We get $(F, L_F) \cong (Q^5, O_{Q^5}(2))$.

If dim X = 2, (M, A) is a scroll over X under φ since $K_M + 5A \approx \varphi^*(3H)$. Note that dim F = 4 and $K_F + 5A_F \approx O_F$. We have $(F, A_F) \cong (P^4, O_{\mathbb{P}^4}(1))$. Since $K_F \cong O_{\mathbb{P}^4}(-5)$ and $2K_F + 5L_F \cong O_F$, $L_F \cong O_{\mathbb{P}^4}(2)$ and so $(F, L_F) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(2))$. If dim $X \ge 3$, then dim $F \le 3$. Since $K_F + 5A_F \approx O_F$, $K_F + 5A_F$ is ample on

F by Theorem (0.6). We get a contradiction. Therefore, dim $X \leq 2$. Second, assume that $\varphi: M \to X$ is birational. Then $K_M + 5A$ is nef and big but

not ample. By Theorem (0.7) the nef value of (M, A) is 5. By [An, Theorem 1], φ contracts disjoint divisors $E \cong \mathbb{P}^5$ to smooth points. Moreover, $L_E(E) \cong O_{\mathbb{P}^5}(-1)$ and $A_E \cong O_{\mathbb{P}^5}(1)$. Note that $A_E \approx K_M|_E + 3L_E$ and $K_M|_E + O_E(E) \cong K_E \cong$ $O_{\mathbb{P}^5}(-6)$. We find that $L_E \cong O_{\mathbb{P}^5}(2)$. Therefore, $(E, L_E) \cong (\mathbb{P}^5, O_{\mathbb{P}^5}(2))$.

(iii') Let n = 6 and v = 3. Note that $2 < \tau = \frac{u}{3} < 3$ and $u \leq 7$. We have $\tau = \frac{7}{3}$. Then $u = 7 \leq \max_{x \in X} \{\dim \varphi^{-1}(x)\} + 1 \leq 7$ by (0.1), and so $\max_{x \in X} \{\dim \varphi^{-1}(x)\} = 6$. It follows that φ contracts M to a point. Thus $3K_M + 7L \approx O_M$. Let $A = 2K_M + 5L$, then $K_M + 7A = 5(3K_M + 7L) \approx O_M$. Thus, by (0.4), $(M, A) \cong (\mathbb{P}^6, O_{\mathbb{P}^6}(1))$. Since $K_M \approx O_{\mathbb{P}^6}(-7)$, we find that $(M, L) \cong (\mathbb{P}^6, O_{\mathbb{P}^6}(3))$.

(iv) Let n = 5. By Lemma (1.1) and the Kawamata Rationality Theorem (0.1), we have that $2 \le v \le \frac{5}{5-4} = 5$, $1 < \tau = 1 + \frac{i}{v} < 2$, and $u \le \max_{x \in X} \{\dim \varphi^{-1}(x)\} + 1 \le 6$. It follows that τ is either $\frac{6}{5}, \frac{5}{4}, \frac{5}{2}, \frac{4}{2}$, or $\frac{3}{2}$.

 $1 \leq 6$. It follows that τ is either $\frac{6}{5}, \frac{5}{4}, \frac{5}{3}, \frac{4}{3}$, or $\frac{3}{2}$. For $\tau = \frac{6}{5}$, we have $\max_{x \in X} \{\dim \varphi^{-1}(x)\} + 1 = 6$ and so φ contracts M to a point. Thus $5K_M + 6L \approx O_M$. Write $K_M + 6(4K_M + 5L) = 5(5K_M + 6L)$. Then $A := 4K_M + 5L$ is an ample line bundle on M, and $K_M + 6A \approx O_M$. By (0.4) [F1] we have $(M, A) \cong (\mathbb{P}^5, O_{\mathbb{P}^5}(1))$. Clearly, $L \cong O_{\mathbb{P}^5}(5)$ and hence $(M, L) \cong (\mathbb{P}^5, O_{\mathbb{P}^5}(5))$.

For $\tau = \frac{5}{4}$, there exists an ample line bundle H such that $4K_M + 5L \approx \varphi^* H$. Write $K_M + 5(3K_M + 4L) = 4(4K_M + 5L)$. Then $A := 3K_M + 4L$ is an ample line bundle on M and $K_M + 5A \approx \varphi^*(4H)$.

First, assume that φ has lower dimensional image. If X is a point, then $K_M + 5A \approx O_M$ and thus $(M, A) \cong (Q^5, O_{Q^5}(1))$ by (0.4) [F1]. From $A = 3K_M + 4L$, we find that $L \cong O_{Q^5}(4)$. Therefore, $(M, L) \cong (Q^5, O_{Q^5}(4))$.

If dim X = 1, then (M, A) is a scroll over X under φ since $K_M + 5A \approx \varphi^*(4H)$. Note that $K_F + 5A_F \approx O_F$. We have $(F, A_F) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(1))$. Clearly, $L_F \cong O_{\mathbb{P}^4}(4)$.

We claim that dim $X \leq 1$. Indeed, otherwise, let dim $X \geq 2$; then dim $F \leq 3$ and $K_F + 5A_F \approx O_F$. But, by Theorem (0.6), $K_F + 5A_F$ is ample on F, a contradiction.

Second, assume that $\varphi: M \to X$ is birational. Then $K_M + 5A$ is nef and big but not ample. But, by Theorem (0.5), $K_M + 5A$ is ample. We get a contradiction. This shows that φ cannot be birational.

Similarly, for $\tau = \frac{5}{3}$, we have that $(M, L) \cong (Q^5, O_{Q^5}(3))$ or (M, A) is a scroll over a curve under φ , and $(F, L_F) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(3))$, where $A := K_M + 2L$ is an ample line bundle on M.

For $\tau = \frac{4}{3}$, $K_M + 4(2K_M + 3L) = 3(3K_M + 4L) \approx \varphi^*(3H)$ for some ample line bundle H on X. $A := 2K_M + 3L$ is an ample line bundle on M. When φ has lower dimensional image, from $K_M + 4A \approx \varphi^*(3H)$, we have that (M, A) is either a Del Pezzo variety with $L \approx 3A$, a quadric fibration over a curve with $(F, L_F) \cong (Q^4, Q_{Q^4}(3))$, or a scroll over a surface with $(F, L_F) \cong (\mathbb{P}^3, O_{\mathbb{P}^3}(3))$. When φ is birational, then $K_M + 4A$ is nef and big but not ample, by [An, Theorem 1] φ contracts disjoint divisors E to points. Moreover, $(E, A_E) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(1))$ and $O_E(E) \cong O_{\mathbb{P}^4}(-1)$. Thus $(E, L_E) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(3))$.

For $\tau = \frac{3}{2}$, write $K_M + 3(K_M + 2L) = 2(2K_M + 3L)$. Then $A := K_M + 2L$ is ample on M. Since $2K_M + 3L \approx \varphi^* H$ for some line bundle H on X, $K_M + 3A \approx \varphi^*(2H)$. When φ has lower dimensional image, we get that (M, A) is either a Mukai variety with $L \approx 2L$, a Del Pezzo fibration over a curve, a quadric fibration over a surface, or a scroll over a 3-dimensional variety.

When φ is birational, then $K_M + 3A$ is nef and big but not ample. Let E be the exceptional locus of φ . By [An, Theorem 3] and its proof, we get that φ contracts disjoint divisors E to curves or points. Moreover, if $\varphi(E)$ is a point, then (E, L_E) is $(\mathbb{P}^4, O_{\mathbb{P}^4}(2))$, or $(Q^4, O_{Q^4}(2))$. If $\varphi(E)$ is a curve, then $(F, L_F) \cong (\mathbb{P}^3, O_{\mathbb{P}^3}(2))$.

(1.3)**Theorem.** Let M be a normal projective variety of dimension $n \ge 4$ with Gorenstein, terminal, \mathbb{Q} -factorial singularities. Let L be an ample line bundle on M. Let τ be the nef value of (M, L) and $\varphi \colon M \to X$ the nef value morphism of

(M,L). Let F be any general fiber of φ . Assume that $n-3 < \tau < n-2$. Then (M, L) must satisfy one of the following:

- (i) $n = 6, \tau = \frac{7}{2}, (M, L) \cong (\mathbb{P}^6, O_{\mathbb{P}^6}(2));$ (ii) $n = 5, \tau = \frac{5}{2}, A := K_M + 3L$ is ample on M, either $(M, L) \cong (Q^5, O_{Q^5}(2))$ or (M, A) is a scroll over a curve under φ and $(F, L_F) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(2));$

(iii) $n = 4, \tau = \frac{5}{3}, \frac{5}{4}, \frac{4}{3}, \text{ or } \frac{3}{2}.$ For $\tau = \frac{5}{3}$, $(M, L) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(3));$ For $\tau = \frac{5}{4}$, $(M, L) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(4))$; For $\tau = \frac{4}{3}$, $A := 2K_M + 3L$ is ample on M, either $(M, L) \cong (Q^4, O_{Q^4}(3))$ or (M, A) is a scroll over a curve and $(F, L_F) \cong (\mathbb{P}^3, O_{\mathbb{P}^3}(3)).$ For $\tau = \frac{3}{2}$, $A := K_M + 2L$ is ample on M, (M, A) is one of the following: a) A Del Pezzo variety;

- b) a quadric fibration over a curve;
- c) a scroll over a surface; or
- d) $2K_M + 3L$ is nef and big, φ contracts disjoint divisors E to smooth points, and $(E, L_E) \cong (\mathbb{P}^3, O_{\mathbb{P}^3}(2)).$

Proof. By Lemma (1.1) we have $n \leq 6$.

(i) Let n = 6. Then v = 2, $\tau = 6 - 3 + \frac{1}{2} = \frac{7}{2}$, and $(M, L) \cong (\mathbb{P}^6, O_{\mathbb{P}^6}(2))$.

(ii) Let n = 5. Then $2 \le v \le \frac{t}{5-2} = \frac{5}{2}$ and thus v = 2, $\tau = 5 - 3 + \frac{1}{2} = \frac{5}{2}$. Write $K_M + 5(K_M + 3L) + 3(2K_M + 5L)$. Then $A := K_M + 3L$ is an ample line bundle on M. There exists an ample line bundle H on X such that $K_M + 5A \approx \varphi^*(3H)$.

First, assume that φ has lower dimensional image. Let F be any general fiber of φ . If X is a point, then $(M, A) \cong (Q^5, O_{Q^5}(1))$ by (0.4). Thus $(M, L) \cong$ $(Q^5, O_{Q^5}(2)).$

If dim X = 1, then (M, A) is a scroll over a curve under φ by definition, and $(F, L_F) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(2)).$

If dim $X \ge 2$, then dim $F \le 3$ and $K_F + 5A_F \approx O_F$. But by (0.6), $K_F + 5A_F$ is ample on F. We get a contradiction.

Second, assume that φ is birational. Then $K_M + 5A$ is nef and big but not ample. But by (0.5), $K_M + 5A$ is ample, a contradiction. Thus, φ cannot be birational.

(iii) Let n = 4. Then $1 < \tau = \frac{u}{v} < 2$ and $u \leq 5$. Using Lemma (1.1), we find that τ is either $\frac{5}{3}, \frac{5}{4}, \frac{4}{3}$, or $\frac{3}{2}$.

For $\tau = \frac{5}{3}$, write $K_M + 5(K_M + 2L) = 2(3K_M + 5L)$ and $A := K_M + 2L$ is ample on M. There exists an ample line bundle H on X such that $K_M + 5A \approx \varphi^*(2H)$.

First, assume that φ has lower dimensional image. If X is a point, then $(M, A) \cong$ $(\mathbb{P}^4, O_{\mathbb{P}^4}(1))$. Clearly, $L \cong O_{\mathbb{P}^4}(3)$. Hence $(M, L) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(3))$.

If dim $X \ge 1$, then dim $F \le 3$ and $K_F + 5A_F \approx O_F$. But by (0.6), $K_F + 5A_F$ is ample on F. We get a contradiction.

Second, assume that φ is birational. Then $K_M + 5A$ is nef and big but not ample. But by (0.5), $K_M + 5A$ is ample, a contradiction. Thus, φ cannot be birational. Similarly, for $\tau = \frac{5}{4}$, we have $(M, L) \cong (\mathbb{P}^4, O_{\mathbb{P}^4}(4))$.

For $\tau = \frac{4}{3}$, $K_M + 4(2K_M + 3L) = 3(3K_M + 4L) \approx \varphi^*(3H)$ for some ample line bundle H on X. $A := 2k_M + 3L$ is an ample line bundle on M. By the same way as above, we get that either $(M, L) \cong (Q^4, O_{Q^4}(3))$ or (M, A) is a scroll over a curve and $(F, L_F) \cong (\mathbb{P}^3, O_{\mathbb{P}^3}(3)).$

For $\tau = \frac{3}{2}$, write $K_M + 3(K_M + 2L) = 2(2K_M + 3L)$. Then $A := K_M + 2L$ is ample on \overline{M} and $K_M + 3A \approx \varphi^*(2H)$ for some line bundle Y on X. When φ has lower dimensional image, we get that (M, A) is either a Del Pezzo variety with $L \approx 2L$, a quadric fibration over a curve with $(F, L_F) \cong (Q^3, O_{Q^3}(2))$, or a scroll over a surface with $(F, L_F) \cong (\mathbb{P}^2, O_{\mathbb{P}^2}(2))$.

When φ is birational, $K_M + 3A$ is nef and big but not ample. By [An, Theorem 1], φ contracts disjoint divisors E to smooth points. Moreover, $O_E(E) \cong O_{\mathbb{P}^3}(-1)$) and $(E, A_E) \cong (\mathbb{P}^3, O_{\mathbb{P}^3}(1))$. Hence $(E, L_E) \cong (\mathbb{P}^3, O_{\mathbb{P}^3}(2))$. The proof is completed.

References

- [An] M. Andreatta, Contractions of Gorenstein polarized varieties with high nef value, Math. Ann. 300 (1994), 669–679. MR 96b:14007
- [BS1] M. Beltrametti and J. A. Sommese, On the adjunction theoretic classification of polarized varieties, J. Reine. Angew. Math. 427 (1992), 157–192. MR 93d:14012
- [BS2] M. Beltrametti and J. A. Sommese, A remark on the Kawamata rationality theorem, J. Math. Soc. Japan 45 (1993), 557–568. MR 94e:14006
- [F1] T. Fujita, Remarks on quasi-polarized varieties, Nagoya Math. J. 115 (1989), 105–123. MR 90i:14045
- [F2] T. Fujita, On Kodaira energy and adjoint reduction of polarized manifolds, Manuscr. Math. 75 (1992), 59–84. MR 93i:14032
- [KMM] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the Minimal Model Program, Advanced Studies in Pure Math. 10 (1987), 283–360. MR 89e:14015
- [Ma] H. Maeda, Ramification divisors for branched coverings of \mathbb{P}^n , Math. Ann. **288** (1990), 195–199. MR **91i**:14011
- [Mo] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. Math. 116 (1982), 133–176. MR 84e:14032
- [S] A. J. Sommese, On the adjunction theoretic structure of projective varieties, Lecture Notes Math. 1194 (1984), 175–213. MR 87m:14049

DEPARTMENT OF MATHEMATICS, JINAN UNIVERSITY, GUANGZHOU 510632, PEOPLE'S REPUBLIC OF CHINA