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ON CLASSIFICATION OF POLARIZED VARIETIES
WITH NON-INTEGRAL NEF VALUES

YICAI ZHAO

(Communicated by Ron Donagi)

Abstract. Let M be an n-dimensional normal projective variety with only
Gorenstein, terminal, Q-factorial singularities. Let L be an ample line bundle
on M . Let τ denote the nef value of (M,L). The classification of (M,L) via the
nef value morphism is given for the situations when τ satisfies n−3 < τ < n−2
or n− 4 < τ < n− 3.

Introduction

Let M be an n-dimensional normal projective variety with only Q-Gorenstein,
terminal singularities and let L be an ample line bundle on M . KM denotes the
canonical divisor, or the canonical sheaf of M . Assume that KM is not nef. The
nef value of (M,L) is a real number defined as τ = min{r ∈ R,KM + rL is nef}.

By the Kawamata Rationality Theorem, τ is a rational number and by the
Kawamata-Shokurov Base Point Free Theorem, |m(KM + τL)| is base point free
for m� 0, and defines a projective surjective morphism ϕ : M → X onto a normal
variety X . ϕ is called the nef value morphism.

Sommese [S] and Beltrametti and Sommese [BS1] establish and develop the the-
ory of the adjunction theoretic classification of projective varieties. The pairs (M,L)
with the nef value τ = n − 1, n − 2, or n − 2 < τ < n − 1 have been classified in
[BS1], [An] and [F2].

This paper studies the pairs (M,L) such that n − 3 < τ < n − 2 or n − 4 <
τ < n − 3. We give out the adjunction theoretic classification for these polarized
varieties.

0. Preliminaries

We work over the complex field C. Throughout this paper, the notions and
notations coincide with that in [BS1]. A variety means an irreducible and reduced
projective scheme.

We begin by recalling some facts from adjunction theory and Mori theory. We
refer for that to [BS1], [KMM] and [Mo].

In this paper, let M be a normal projective variety of dimension n ≥ 2, and let
L be an ample line bundle on M .
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(0.1)Kawamata Rationality Theorem([KMM, (4-1-1)]). Let M be a normal va-
riety of dimension n with terminal singularities and let r be the index of M . Let
f : M → S be a projective morphism onto variety S. Let L be an f -ample line
bundle on M . If KM is not f -nef, then τ = min{r ∈ R,KM + rL is f -nef } is
a positive rational number. Furthermore expressing rτ = u/v with u, v positive
coprime integers, we have u ≤ r(b + 1) where b = max{dim f−1(s), s ∈ S}.

(0.2)Theorem([BS1, (0.2.3)]). Let T be the locus of terminal singularities on M .
Then codM T ≥ 3.

(0.3)Special varieties([BS1]). Let M be an n-dimensional normal projective va-
riety with Gorenstein singularities. We say that (M,L) is a Del Pezzo variety (resp.
a Mukai variety) if KM ≈ −(n − 1)L (resp. KM ≈ −(n− 2)L); (M,L) is a scroll
(resp. a quadric variety) if KM ≈ −(n − 1)L (resp. KM ≈ −(n − 2)L); (M,L) is
a scroll (resp. a quadric fibration; resp. a Del Pezzo fibration; resp. a Mukai fibra-
tion) over a normal variety X of dimension m if there exists a surjective morphism
with connected fibers ϕ : M → L such that KM + (n − m + 1)L ≈ ϕ∗H (resp.
KM + (n −m)L ≈ ϕ∗H ; resp. KM + (n −m − 1)L ≈ ϕ∗H) for some ample line
bundle H on X . Here ≈ denotes the linearly equivalence relation.

(0.4)Kobayashi-Ochiai Theorem([F1, (2,2), (2.3)]). Let M be an n-dimen-
sional normal projective variety and let L be an ample line bundle on M . Then

(i) (M,L) ∼= (Pn, OPn(1)) if KM + (n+ 1)L ∼ OM .
(ii) (M,L) ∼= (Qn, OQn(1)), Qn is a hyperquadric in Pn+1, if KM + nL ∼ OM .

Here ∼ denotes the numerically equivalence relation.

(0.5)Theorem([BS1, (2.3)]). Let M be an n-dimensional irreducible normal pro-
jective variety with terminal singularities and let L be an ample line bundle on M .
Assume that X is Q-factorial and that KM +nL is nef and big. Then KM + nL is
ample.

(0.6)Theorem([Ma, (2.1)]). Let M be an n-dimensional normal projective variety
with only terminal singularities. Let L be an ample line bundle on M . Then
KM + nL is nef unless (M,L) ∼= (Pn, OPn(1)). In particular, KM + (n + 1)L is
always nef and is ample unless (M,L) ∼= (Pn, OPn(1)).

(0.7)Theorem([BS1, (0.8.3)]). A rational number τ is the nef value of (M,L) if
and only if KM + τL is nef but not ample.

1. Classifications of polarized varieties

The following lemma is needed in the sequel.

(1.1)Lemma. Let M be an n-dimensional normal projective variety with Goren-
stein, terminal, Q-factorial singularities, and let L be an ample line bundle on M .
Let τ be the nef value of (M,L). By the Kawamata rationality theorem, r = u/v
with u, v positive coprime integers. Assume that n − k < τ < n − k + 1 for some
positive integer k < n. Then

(i) n ≤ 2k, and if n = 2k then (M,L) ∼= (Pn, OPn(2));
(ii) 2 ≤ v ≤ n

n−k and τ = n − k + i
v for some positive integer i < v and i, v

coprime.
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Proof. From the assumption, we see that r = u/v is not an integer and thus v ≥ 2.
By the Kawamata rationality theorem, we have that u ≤ n+1, and thus v(n−k) <
u ≤ n + 1 or v(n − k) ≤ n. It follows that 2 ≤ v ≤ n

n−k . Moreover, since
v(n − k) < u < v(n − k) + v, we get that τ = n − k + i

v for some positive integer
i ≤ v. Note that u = v(n−k)+ i. If i, v are not coprime, then u, v are not coprime,
a contradiction. Hence we find (1.1), (ii).

Let ϕ : M → X be the nef value morphism of (M,L). Suppose n = 2k. By the
above and the Kawamata rationality theorem, we have

u = vk + i ≤ max
x∈X
{dimϕ−1(x)} + 1 ≤ 2k + 1.

Since v ≥ 2 and i ≥ 1, it follows that u = 2k+1 and v = 2. Thus dimϕ−1(x) = n
for some x ∈ X , that is, ϕ contracts M to a point. We have 2KM +(n+1)L ≈ OM .
By [BS1, (0.11)] there exists an ample line bundle A on M such that KM ≈
−(n + 1)A and L ≈ 2A. By the Kobayashi-Ochiai Theorem (0.4), (M,A) ∼=
(Pn, PPn(1)) and thus (M,L) ∼= (Pn, OPn(2)).

The main results of this paper are as follows.

(1.2)Theorem. Let M be a normal projective variety of dimension n ≥ 5 with
Gorenstein, terminal, Q-factorial singularities. Let L be an ample line bundle on
M . Let τ denote the nef value of (M,L) and ϕ : M → X the nef value morphism
of (M,L), and let F be any general fiber of ϕ. Assume that n − 4 < τ < n − 3.
Then (M,L) must be one of the following.

(i) n = 8, τ = 9
2 , (M,L) ∼= (P8, OP8(2));

(ii) n = 7, τ = 7
2 , either (M,L) ∼= (Q7, OQ7(2)) or M is a P6-bundle over a curve

under ϕ and (F,LF ) ∼= (P6, OP6(2);
(iii) n = 6, τ = 5

2 , A := KM + 3L is ample on M . (M,A) is one of the following:
a) a Del Pezzo variety and L ≈ 2A;
b) a quadric fibration over a curve, and (F,LF ) ∼= (Q5, OQ5(2));
c) a scroll over a surface, and (F,LF ) ∼= (P4, OP4(2));
d) 2KM+5L is nef and big, ϕ contracts disjoint divisors E to smooth points,

and each (E,LE) ∼= (P5, OP5(2));
(iii′) n = 6, τ = 7

3 , (M,L) ∼= (P6, OP6(3));
(iv) n = 5, τ is either 6

5 ,
5
4 ,

5
3 ,

4
3 , or 3

2 .
For τ = 6

5 , (M,L) ∼= (P5, OP5(5));
For τ = 5

4 , (M,L) ∼= (Q5, OQ5(4)), or (M,A) is a scroll over a curve for
some ample line bundle A on M and (F,LF ) ∼= (P4, OP4(4));
For τ = 5

3 , (M,L) ∼= (Q5, OQ5(3)), or (M,A) is a scroll over a curve for
some ample line bundle A on M and (F,LF ) ∼= (P4, OP4(3));
For τ = 4

3 , A := 2KM + 3L is ample on M , (M,A) is one of the following:
a) a Del Pezzo variety with L ≈ 3A;
b) a quadric fibration over a curve with (F,LF ) ∼= (Q4, OQ4(3));
c) a scroll over a surface with (F,LF ) ∼= (P3, OP3(3)); or
d) 3KM + 4L is nef and big, and ϕ contracts disjoint divisors E to points

and each (E,LE) ∼= (P4, OP4(3)).
For τ = 3

2 , A := KM + 2L is an ample line bundle on M , (M,A) is either
a Mukai variety with L ≈ 2A, a Del Pezzo fibration over a curve, a quadric
fibration over a surface, a scroll over a 3-dimensional variety, or 2KM+3L is
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nef and big, ϕ contracts disjoint divisors E to curves or points, the structure
of each E is as follows.
a) if ϕ(E) is a point, then (E,LE) is (P4, OP4(2)), or (Q4, OQ4(2));
b) if ϕ(E) is a curve, then (F,LF ) ∼= (P3, OP3(2)).

Proof. By Lemma (1.1), n ≤ 8 and when n = 8, (M,L) ∼= (P8, OP8(2)). Moreover,
from the proof of Lemma (1.1), we have τ = 9

2 , as in (1.2) (i).
(ii) Let n = 7. By Lemma (1.1), 2 ≤ v ≤ 7

3 . Thus v = 2 and by Lemma (1.1)
again τ = 7− 4 + 1

2 = 7
2 , and so u = 7. By Kawamata Rationality Theorem (0.1),

we have 7 ≤ maxx∈X{dimϕ−1(x)} + 1 ≤ 8 or 6 ≤ maxx∈X{dimϕ−1(x)} ≤ 7.
Suppose maxx∈X{dimϕ−1(x)} = 7; then ϕ contracts M to a point, and we have

2KM + 7L ≈ OM . By [BS1, (0.11)], there exists an ample line bundle A on M such
that KM ≈ −7A and L ≈ 2A. By the Kobayashi-Ochiai Theorem (0.4), we get
that (M,A) ∼= (Q7, OQ7(1)). Hence (M,L) ∼= (Q7, OQ7(2)).

Suppose maxx∈X{dimϕ−1(x)} = 6; then dimX ≥ 1. We claim that dimX = 1.
Indeed, otherwise, assume that d := dimX ≥ 2. First, let d < n. Let F be

a general fiber of ϕ : M → X . Then dimF ≤ 5. Since τ = 7
2 , we have 2KF +

7LF ≈ OF . By [BS1, (0.11)], there exists an ample line bundle A on F such that
KF + 7A ≈ OF and 7 ≤ dimF + 1 ≤ 6, a contradiction. Second, let d = n.
Then 2KM + 7L is nef and big. Write KM + 7(KM + 4L) = 4(2KM + 7L). Then
A := KM + 4L is an ample line bundle on M , and KM + 7A is nef and big but not
ample. However, by Theorem (0.5), KM + 7A is ample. We get a contradiction.

Now, we have that codM Sing(M) ≥ 3 > dimX by Theorem (0.2) and that
u = maxx∈X{dimϕ−1(x)}+ 1 = 7. By [BS2, (1.4)], M is a P6-bundle over a curve
X under ϕ. Finally, for any general fiber F of ϕ, we have 2KF + 7LF ≈ OF . Note
that F ∼= P6 and KM

∼= OP6(−7). We get that (F,LF ) ∼= (P6, OP6(2), as in (1.2)
(ii).

(iii) Let n = 6. By Lemma (1.1), 2 ≤ v ≤ 6
6−4 = 3, so v = 2 or v = 3.

Let v = 2 and τ = u
v = 6−4 + 1

2 = 5
2 . Write KM + 5(KM + 3L) = 3(2KM + 5L).

Then A := KM + 3L is an ample line bundle on M .
First, assume that ϕ : M → X has lower dimensional image. If dimX = 0, then

KM + 5A ≈ OM and L ≈ 2A. By definition (0.3), (M,A) is a Del Pezzo variety.
Let dimX ≥ 1, and let F be any general fiber of ϕ. Since 2KM + 5LM ≈ ϕ∗H

for some ample line bundle H on X by [KMM, (3-2-1)], KM + 5A ≈ ϕ∗(3H).
If dimX = 1, (M,A) is a quadric fibration over X under ϕ by definition. More-

over, KF + 5AF ≈ OF . Since dimF = 5, (F,AF ) ∼= (Q5, OQ5(1)) by (0.4) [F1].
Note that KF

∼= OQ5(−t) and 2KF + 5LF ∼= OF . We get (F,LF ) ∼= (Q5, OQ5(2)).
If dimX = 2, (M,A) is a scroll over X under ϕ since KM + 5A ≈ ϕ∗(3H). Note

that dimF = 4 and KF + 5AF ≈ OF . We have (F,AF ) ∼= (P 4, OP4(1)). Since
KF
∼= OP4(−5) and 2KF + 5LF ∼= OF , LF ∼= OP4(2) and so (F,LF ) ∼= (P4, OP4(2)).

If dimX ≥ 3, then dimF ≤ 3. Since KF + 5AF ≈ OF , KF + 5AF is ample on
F by Theorem (0.6). We get a contradiction. Therefore, dimX ≤ 2.

Second, assume that ϕ : M → X is birational. Then KM + 5A is nef and big but
not ample. By Theorem (0.7) the nef value of (M,A) is 5. By [An, Theorem 1], ϕ
contracts disjoint divisors E ∼= P5 to smooth points. Moreover, LE(E) ∼= OP5(−1)
and AE ∼= OP5(1). Note that AE ≈ KM |E + 3LE and KM |E + OE(E) ∼= KE

∼=
OP5(−6). We find that LE ∼= OP5(2). Therefore, (E,LE) ∼= (P5, OP5(2)).

(iii′) Let n = 6 and v = 3. Note that 2 < τ = u
3 < 3 and u ≤ 7. We

have τ = 7
3 . Then u = 7 ≤ maxx∈X{dimϕ−1(x)} + 1 ≤ 7 by (0.1), and so
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maxx∈X{dimϕ−1(x)} = 6. It follows that ϕ contracts M to a point. Thus 3KM +
7L ≈ OM . Let A = 2KM + 5L, then KM + 7A = 5(3KM + 7L) ≈ OM . Thus,
by (0.4), (M,A) ∼= (P6, OP6(1)). Since KM ≈ OP6(−7), we find that (M,L) ∼=
(P6, OP6(3)).

(iv) Let n = 5. By Lemma (1.1) and the Kawamata Rationality Theorem (0.1),
we have that 2 ≤ v ≤ 5

5−4 = 5, 1 < τ = 1+ i
v < 2, and u ≤ maxx∈X{dimϕ−1(x)}+

1 ≤ 6. It follows that τ is either 6
5 ,

5
4 ,

5
3 ,

4
3 , or 3

2 .
For τ = 6

5 , we have maxx∈X{dimϕ−1(x)} + 1 = 6 and so ϕ contracts M to a
point. Thus 5KM + 6L ≈ OM . Write KM + 6(4KM + 5L) = 5(5KM + 6L). Then
A := 4KM+5L is an ample line bundle onM , and KM+6A ≈ OM . By (0.4) [F1] we
have (M,A) ∼= (P5, OP5(1)). Clearly, L ∼= OP5(5) and hence (M,L) ∼= (P5, OP5(5)).

For τ = 5
4 , there exists an ample line bundle H such that 4KM + 5L ≈ ϕ∗H .

Write KM + 5(3KM + 4L) = 4(4KM + 5L). Then A := 3KM + 4L is an ample line
bundle on M and KM + 5A ≈ ϕ∗(4H).

First, assume that ϕ has lower dimensional image. If X is a point, then KM +
5A ≈ OM and thus (M,A) ∼= (Q5, OQ5(1) by (0.4) [F1]. From A = 3KM + 4L, we
find that L ∼= OQ5(4). Therefore, (M,L) ∼= (Q5, OQ5(4)).

If dimX = 1, then (M,A) is a scroll over X under ϕ since KM + 5A ≈ ϕ∗(4H).
Note that KF +5AF ≈ OF . We have (F,AF ) ∼= (P4, OP4(1)). Clearly, LF ∼= OP4(4).

We claim that dimX ≤ 1. Indeed, otherwise, let dimX ≥ 2; then dimF ≤ 3 and
KF +5AF ≈ OF . But, by Theorem (0.6), KF +5AF is ample on F , a contradiction.

Second, assume that ϕ : M → X is birational. Then KM + 5A is nef and big but
not ample. But, by Theorem (0.5), KM + 5A is ample. We get a contradiction.
This shows that ϕ cannot be birational.

Similarly, for τ = 5
3 , we have that (M,L) ∼= (Q5, OQ5(3)) or (M,A) is a scroll

over a curve under ϕ, and (F,LF ) ∼= (P4, OP4(3)), where A := KM +2L is an ample
line bundle on M .

For τ = 4
3 , KM + 4(2KM + 3L) = 3(3KM + 4L) ≈ ϕ∗(3H) for some ample

line bundle H on X . A := 2KM + 3L is an ample line bundle on M . When ϕ
has lower dimensional image, from KM + 4A ≈ ϕ∗(3H), we have that (M,A) is
either a Del Pezzo variety with L ≈ 3A, a quadric fibration over a curve with
(F,LF ) ∼= (Q4, QQ4(3)), or a scroll over a surface with (F,LF ) ∼= (P3, OP3(3)).
When ϕ is birational, then KM +4A is nef and big but not ample, by [An, Theorem
1] ϕ contracts disjoint divisors E to points. Moreover, (E,AE) ∼= (P4, OP4(1)) and
OE(E) ∼= OP4(−1). Thus (E,LE) ∼= (P4, OP4(3)).

For τ = 3
2 , write KM+3(KM+2L) = 2(2KM+3L). Then A := KM+2L is ample

on M . Since 2KM + 3L ≈ ϕ∗H for some line bundle H on X , KM + 3A ≈ ϕ∗(2H).
When ϕ has lower dimensional image, we get that (M,A) is either a Mukai variety
with L ≈ 2L, a Del Pezzo fibration over a curve, a quadric fibration over a surface,
or a scroll over a 3-dimensional variety.

When ϕ is birational, then KM + 3A is nef and big but not ample. Let E be the
exceptional locus of ϕ. By [An, Theorem 3] and its proof, we get that ϕ contracts
disjoint divisors E to curves or points. Moreover, if ϕ(E) is a point, then (E,LE)
is (P4, OP4(2)), or (Q4, OQ4(2)). If ϕ(E) is a curve, then (F,LF ) ∼= (P3, OP3(2)).

(1.3)Theorem. Let M be a normal projective variety of dimension n ≥ 4 with
Gorenstein, terminal, Q-factorial singularities. Let L be an ample line bundle on
M . Let τ be the nef value of (M,L) and ϕ : M → X the nef value morphism of
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(M,L). Let F be any general fiber of ϕ. Assume that n − 3 < τ < n − 2. Then
(M,L) must satisfy one of the following:

(i) n = 6, τ = 7
2 , (M,L) ∼= (P6, OP6(2));

(ii) n = 5, τ = 5
2 , A := KM + 3L is ample on M , either (M,L) ∼= (Q5, OQ5(2))

or (M,A) is a scroll over a curve under ϕ and (F,LF ) ∼= (P4, OP4(2));
(iii) n = 4, τ = 5

3 ,
5
4 ,

4
3 , or 3

2 .
For τ = 5

3 , (M,L) ∼= (P4, OP4(3));
For τ = 5

4 , (M,L) ∼= (P4, OP4(4));
For τ = 4

3 , A := 2KM + 3L is ample on M , either (M,L) ∼= (Q4, OQ4(3)) or
(M,A) is a scroll over a curve and (F,LF ) ∼= (P3, OP3(3)).
For τ = 3

2 , A := KM + 2L is ample on M , (M,A) is one of the following:
a) A Del Pezzo variety;
b) a quadric fibration over a curve;
c) a scroll over a surface; or
d) 2KM+3L is nef and big, ϕ contracts disjoint divisors E to smooth points,

and (E,LE) ∼= (P3, OP3(2)).

Proof. By Lemma (1.1) we have n ≤ 6.
(i) Let n = 6. Then v = 2, τ = 6− 3 + 1

2 = 7
2 , and (M,L) ∼= (P6, OP6(2)).

(ii) Let n = 5. Then 2 ≤ v ≤ t
5−2 = 5

2 and thus v = 2, τ = 5− 3 + 1
2 = 5

2 . Write
KM + 5(KM + 3L) + 3(2KM + 5L). Then A := KM + 3L is an ample line bundle
on M . There exists an ample line bundle H on X such that KM + 5A ≈ ϕ∗(3H).

First, assume that ϕ has lower dimensional image. Let F be any general fiber
of ϕ. If X is a point, then (M,A) ∼= (Q5, OQ5(1)) by (0.4). Thus (M,L) ∼=
(Q5, OQ5(2)).

If dimX = 1, then (M,A) is a scroll over a curve under ϕ by definition, and
(F,LF ) ∼= (P4, OP4(2)).

If dimX ≥ 2, then dimF ≤ 3 and KF + 5AF ≈ OF . But by (0.6), KF + 5AF is
ample on F . We get a contradiction.

Second, assume that ϕ is birational. Then KM+5A is nef and big but not ample.
But by (0.5), KM + 5A is ample, a contradiction. Thus, ϕ cannot be birational.

(iii) Let n = 4. Then 1 < τ = u
v < 2 and u ≤ 5. Using Lemma (1.1), we find

that τ is either 5
3 ,

5
4 ,

4
3 , or 3

2 .
For τ = 5

3 , write KM +5(KM +2L) = 2(3KM +5L) and A := KM +2L is ample
on M . There exists an ample line bundle H on X such that KM + 5A ≈ ϕ∗(2H).

First, assume that ϕ has lower dimensional image. If X is a point, then (M,A) ∼=
(P4, OP4(1)). Clearly, L ∼= OP4(3). Hence (M,L) ∼= (P4, OP4(3)).

If dimX ≥ 1, then dimF ≤ 3 and KF + 5AF ≈ OF . But by (0.6), KF + 5AF is
ample on F . We get a contradiction.

Second, assume that ϕ is birational. Then KM+5A is nef and big but not ample.
But by (0.5), KM + 5A is ample, a contradiction. Thus, ϕ cannot be birational.

Similarly, for τ = 5
4 , we have (M,L) ∼= (P4, OP4(4)).

For τ = 4
3 , KM + 4(2KM + 3L) = 3(3KM + 4L) ≈ ϕ∗(3H) for some ample line

bundle H on X . A := 2kM +3L is an ample line bundle on M . By the same way as
above, we get that either (M,L) ∼= (Q4, OQ4(3)) or (M,A) is a scroll over a curve
and (F,LF ) ∼= (P3, OP3(3)).

For τ = 3
2 , write KM + 3(KM + 2L) = 2(2KM + 3L). Then A := KM + 2L

is ample on M and KM + 3A ≈ ϕ∗(2H) for some line bundle Y on X . When ϕ
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has lower dimensional image, we get that (M,A) is either a Del Pezzo variety with
L ≈ 2L, a quadric fibration over a curve with (F,LF ) ∼= (Q3, OQ3(2)), or a scroll
over a surface with (F,LF ) ∼= (P2, OP2(2)).

When ϕ is birational, KM+3A is nef and big but not ample. By [An, Theorem 1],
ϕ contracts disjoint divisors E to smooth points. Moreover,OE(E) ∼= OP3(−1)) and
(E,AE) ∼= (P3, OP3(1)). Hence (E,LE) ∼= (P3, OP3(2)). The proof is completed.
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