DOUGLAS ALGEBRAS
 WHICH ADMIT CODIMENSION 1 LINEAR ISOMETRIES

KEIJI IZUCHI

(Communicated by Joseph A. Ball)

Abstract

Let B be a Douglas algebra and let B_{b} be its Bourgain algebra. It is proved that B admits a codimension 1 linear isometry if and only if $B \neq B_{b}$. This answers the conjecture of Araujo and Font.

1. Introduction

Let H^{∞} be the Banach algebra of bounded analytic functions on the unit disk D. Identifying a function in H^{∞} with its boundary function, we view H^{∞} as the closed subalgebra of L^{∞}, the usual Lebesgue space on the unit circle ∂D. A closed subalgebra B with $H^{\infty} \subset B \subset L^{\infty}$ is called a Douglas algebra. In [1], Araujo and Font studied codimension 1 linear isometries of Douglas algebras. They noted that H^{∞} has the codimension 1 linear isometry; $T f=z f, f \in H^{\infty}$, where z is the identity function on D, and L^{∞} does not have any codimension 1 linear isometries, (see also [2]). They also gave the conjecture that proper Douglas algebras admit no codimension 1 linear isometries. In this paper, we give a characterization of Douglas algebras which admit codimension 1 linear isometries.

First, recall the structure of Douglas algebras. For a Douglas algebra B, we denote by $M(B)$ the set of non-zero multiplicative linear functionals of B. We consider the weak*-topology on $M(B)$. We identify a function in B with its Gelfand transform. Then we may think of $M(B)$ as a compact subset of $M\left(H^{\infty}\right)$. It is known that $M\left(L^{\infty}\right)$ is the Shilov boundary of H^{∞}. For a subset E of $M\left(H^{\infty}\right)$, we denote by \bar{E} the closure of E in $M\left(H^{\infty}\right)$. For a function f in B, let $Z_{B}(f)=\{x \in$ $M(B) ; f(x)=0\}$. For $x \in M\left(H^{\infty}\right)$, there is a unique probability measure μ_{x} on $M\left(L^{\infty}\right)$ such that $f(x)=\int_{M\left(L^{\infty}\right)} f d \mu_{x}$ for every $f \in H^{\infty}$. We denote by supp μ_{x} the closed support set of μ_{x}.

A function $f \in H^{\infty}$ is called inner if $|f|=1$ on $M\left(L^{\infty}\right)$. Let $\left\{z_{n}\right\}_{n}$ be a sequence in D with $\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$. Then there is the associated Blaschke product b given by

$$
b(z)=\prod_{n=1}^{\infty} \frac{-\bar{z}_{n}}{\left|z_{n}\right|} \frac{z-z_{n}}{1-\bar{z}_{n} z}, \quad z \in D .
$$

[^0]A sequence $\left\{z_{n}\right\}_{n}$ in D is called interpolating if for every bounded sequence of complex numbers $\left\{a_{n}\right\}_{n}$ there exists $h \in H^{\infty}$ such that $h\left(z_{n}\right)=a_{n}$ for every n. A Blaschke product is called interpolating if its zero sequence is interpolating. It is known that a Blaschke product is inner (see Hoffman's book [10]).

The smallest Douglas algebra except H^{∞} is $H^{\infty}+C$, where C is the space of continuous functions on ∂D, and it is known that $M\left(H^{\infty}+C\right)=M\left(H^{\infty}\right) \backslash D$ (see [14]). Chang [4] and Marshall [13] proved that if B is a Douglas algebra, then $B=$ $H^{\infty}\left[\bar{b}_{\alpha} ; \alpha \in \Lambda\right]$, where $\left\{b_{\alpha}\right\}_{\alpha \in \Lambda}$ is a family of some interpolating Blaschke products and $M(B)=\bigcap_{\alpha \in \Lambda}\left\{x \in M\left(H^{\infty}\right) ;\left|b_{\alpha}(x)\right|=1\right\}$. And they showed that for Douglas algebras A and B, it holds that $A \subset B$ if and only if $M(B) \subset M(A)$. By Chang and Marshall's theorem, we have that $x \in M(B)$ if and only if $B_{\mid \operatorname{supp} \mu_{x}}=\left(H^{\infty}\right)_{\mid \operatorname{supp} \mu_{x}}$. Put

$$
B_{\operatorname{supp} \mu_{x}}=\left\{f \in L^{\infty} ; f_{\mid \operatorname{supp} \mu_{x}} \in B_{\mid \operatorname{supp} \mu_{x}}\right\}
$$

Then $B_{\text {supp } \mu_{x}}$ is a Douglas algebra and

$$
M\left(B_{\operatorname{supp} \mu_{x}}\right)=M\left(L^{\infty}\right) \cup\left\{y \in M(B) ; \operatorname{supp} \mu_{y} \subset \operatorname{supp} \mu_{x}\right\}
$$

A nice reference for Douglas algebras is Garnett's book [6].
Next, recall the work of Hoffman [11]. For $x, y \in M\left(H^{\infty}\right)$, put

$$
\rho(x, y)=\sup \left\{|f(y)| ; f \in H^{\infty}, f(x)=0,\|f\|_{\infty} \leq 1\right\}
$$

For $x \in M\left(H^{\infty}\right)$, let $P(x)=\left\{y \in M\left(H^{\infty}\right) ; \rho(x, y)<1\right\}$. When $P(x)=\{x\}$, a point x is called trivial. When $P(x) \neq\{x\}$, in this case x is called non-trivial; there is a one-to-one continuous map L_{x} from D onto $P(x)$ such that $f \circ L_{x} \in H^{\infty}$ for every $f \in H^{\infty}$ and $L_{x}(0)=x$. Moreover if $f(x)=0$, we can define the order of zero at x, ord (f, x), by the usual order of zero of $f \circ L_{x}$ at $z=0$. When $f=0$ on $P(x)$, we put ord $(f, x)=\infty$.

For a Douglas algebra B, we denote by B_{b} the set of f in L^{∞} such that if $f_{n} \rightarrow 0$ weakly in B, then $\left\|f f_{n}+B\right\| \rightarrow 0$. Cima and Timoney [5] studied B_{b} in a general setting. By their results, B_{b} is a Douglas algebra and $B \subset B_{b}$. They called B_{b} the Bourgain algebra of B. Douglas algebras B satisfying $B \neq B_{b}$ are characterized in [7]. In this paper, we prove the following theorem.
Theorem. Let B be a Douglas algebra. Then B admits a codimension 1 linear isometry T if and only if $B_{b} \neq B$. In this case T has the following form: $T f=$ $(u b)(f \circ \varphi), f \in B$, where u is an invertible unimodular function in B, b is an interpolating Blaschke product, and φ is a homeomorphism of $M\left(L^{\infty}\right)$ satisfying the following conditions.
(i) $B \circ \varphi=B$.
(ii) $\{y \in M(B) ;|b(y)|<1\}=P\left(x_{0}\right)$ for some $x_{0} \in M(B)$.

2. Proof of the theorem

First of all, we show a counterexample for Araujo and Font's conjecture. A Blaschke product b with zeros $\left\{z_{n}\right\}_{n}$ is called sparse (or thin) if

$$
\lim _{n \rightarrow \infty} \prod_{j: j \neq n}\left|\frac{z_{j}-z_{n}}{1-\bar{z}_{n} z_{j}}\right|=1
$$

Let $x_{0} \in Z_{H^{\infty}+C}(b)$ and $B=H_{\text {supp } \mu_{x_{0}}}^{\infty}$. Then $\{y \in M(B) ;|b(y)|<1\}=P\left(x_{0}\right)$ and $b B=\left\{g \in B ; g\left(x_{0}\right)=0\right\}$ (see [9]). Hence $T f=b f, f \in B$, is a codimension 1 linear isometry on B.

To prove our theorem, we need two lemmas.
Lemma 1. Let A and B be Douglas algebras with $B \subsetneq A$. Then $M(B) \backslash M(A)$ is not a closed subset of $M(B)$.

Proof. Since $B \subsetneq A$, by Chang and Marshall's theorem $M(A) \subset M(B)$ and $M(B) \backslash$ $M(A) \neq \emptyset$. To prove our assertion, suppose not. Then $M(B) \backslash M(A)$ is an openclosed subset of $M(B)$. Hence by Shilov's idempotent theorem, there is $\chi \in B$ such that $\chi=1$ on $M(B) \backslash M(A)$ and $\chi=0$ on $M(A)$. Since $M\left(L^{\infty}\right) \subset M(A)$, $\chi=0$ on $M\left(L^{\infty}\right)$. Thus we get $\chi=0$ on $M(B)$ and $M(B) \backslash M(A)=\emptyset$. This is a contradiction.

Lemma 2. Let A and B be Douglas algebras with $B \subsetneq A$. Then

$$
M(A) \cap \overline{M(B) \backslash M(A)}
$$

contains uncountably many distinct points.
Proof. By Chang and Marshall's theorem, there is an interpolating Blaschke product q such that

$$
\begin{equation*}
\bar{q} \in A \quad \text { and } \quad \bar{q} \notin B \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\emptyset \neq\{y \in M(B) ;|q(y)|<1\} \subset M(B) \backslash M(A) \tag{2.2}
\end{equation*}
$$

We have

$$
\begin{equation*}
q(M(B))=D \cup \partial D \tag{2.3}
\end{equation*}
$$

For, if $\zeta \in D$, then $q_{\zeta}=(q-\zeta) /(1-\bar{\zeta} q)$ is an inner function and q_{ζ} is not invertible in B. Hence there is $x \in M(B)$ such that $q_{\zeta}(x)=0$. Thus we get $\zeta \in q(M(B))$.

Let

$$
\begin{equation*}
\Gamma=\overline{\{y \in M(B) ;|q(y)|<1\}} \backslash\{y \in M(B) ;|q(y)|<1\} \tag{2.4}
\end{equation*}
$$

Then by (2.3), we have $q(\Gamma)=\partial D$. For each $\xi \in \partial D$, take $x_{\xi} \in \Gamma$ such that $q\left(x_{\xi}\right)=\xi$. Then $q=\xi$ on supp $\mu_{x_{\xi}}$ and

$$
\begin{equation*}
\operatorname{supp} \mu_{x_{\xi}} \cap \operatorname{supp} \mu_{x_{\eta}}=\emptyset \quad \text { if } \xi, \eta \in \partial D \text { and } \xi \neq \eta \tag{2.5}
\end{equation*}
$$

We shall prove that for each $\xi \in \partial D$ there exists $y_{\xi} \in M(B)$ such that

$$
\begin{equation*}
\operatorname{supp} \mu_{y_{\xi}} \subset \operatorname{supp} \mu_{x_{\xi}} \quad \text { and } \quad y_{\xi} \in M(A) \cap \overline{M(B) \backslash M(A)} \tag{2.6}
\end{equation*}
$$

Then by (2.5), points in $\left\{y_{\xi} ; \xi \in \partial D\right\}$ are distinct and we get our assertion.
We shall show the existence of y_{ξ} satisfying (2.6). If $x_{\xi} \in M(A)$, by (2.1) we have $\left|q\left(x_{\xi}\right)\right|=1$. Since $x_{\xi} \in \Gamma$, by (2.4) we have $x_{\xi} \in \underline{\{y \in M(B) ;|q(y)|<1\}}$. Hence by (2.2), $x_{\xi} \in \overline{M(B) \backslash M(A)}$. Thus $x_{\xi} \in M(A) \cap \overline{M(B) \backslash M(A)}$. Put $y_{\xi}=x_{\xi}$; then (2.6) holds.

Next, suppose that $x_{\xi} \notin M(A)$. Put $A_{1}=A_{\text {supp } \mu_{x_{\xi}}}$ and $B_{1}=B_{\operatorname{supp} \mu_{x_{\xi}}}$. Then $B_{1} \subset A_{1}$. Since $x_{\xi} \in M(B), B_{1}=\left(H^{\infty}\right)_{\operatorname{supp} \mu_{x_{\xi}}}$. Since $x_{\xi} \notin M(B), A_{1} \neq$ $\left(H^{\infty}\right)_{\operatorname{supp} \mu_{x_{\xi}}}$. Hence we have $B_{1} \neq A_{1}$. By Lemma 1, there exists a point y_{ξ} such that

$$
\begin{equation*}
y_{\xi} \in M\left(A_{1}\right) \cap \overline{M\left(B_{1}\right) \backslash M\left(A_{1}\right)} \tag{2.7}
\end{equation*}
$$

We have

$$
\begin{aligned}
& M\left(B_{1}\right)=M\left(L^{\infty}\right) \cup\left\{y \in M(B) ; \operatorname{supp} \mu_{y} \subset \operatorname{supp} \mu_{x_{\xi}}\right\}, \\
& M\left(A_{1}\right)=M\left(L^{\infty}\right) \cup\left\{y \in M(A) ; \operatorname{supp} \mu_{y} \subset \operatorname{supp} \mu_{x_{\xi}}\right\}
\end{aligned}
$$

By the above

$$
\begin{equation*}
M\left(B_{1}\right) \backslash M\left(A_{1}\right)=\left\{y \in M(B) \backslash M(A) ; \operatorname{supp} \mu_{y} \subset \operatorname{supp} \mu_{x_{\xi}}\right\} \tag{2.8}
\end{equation*}
$$

Hence by (2.7), we have $\operatorname{supp} \mu_{y_{\xi}} \subset \operatorname{supp} \mu_{x_{\xi}}$. Since $M\left(A_{1}\right) \subset M(A)$ and by (2.7) and (2.8), we have $y_{\xi} \in M(A) \cap \overline{M(B) \backslash M(A)}$.
Proof of the theorem. Suppose that $B_{b} \neq B$. By Chang and Marshall's theorem, there is an interpolating Blaschke product ψ such that $\bar{\psi} \in B_{b}$ and $\bar{\psi} \notin B$. By 7. Theorem 2], $Z_{B}(\psi)$ is a finite set. Let $Z_{B}(\psi)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that $x_{i} \neq x_{j}, i \neq j$. Take an open subset V of $M\left(H^{\infty}\right)$ such that $x_{1} \in V$ and $x_{j} \notin \bar{V}$ for $j=2,3, \ldots, n$. Let $\left\{z_{n}\right\}_{n}$ be the zeros of ψ in D. Let ψ_{1} be the subproduct of ψ whose zeros are $\left\{z_{n}\right\}_{n} \cap V$. By [10, p. 205], $Z_{H^{\infty}}(\psi)=\overline{\left\{z_{n}\right\}_{n}}$, so that we have $Z_{B}\left(\psi_{1}\right)=\left\{x_{1}\right\}$. Let $T f=\psi_{1} f$ for $f \in B$. Then T is a linear isometry on B and $T B \subset\left\{g \in B ; g\left(x_{1}\right)=0\right\}$. By [3, 9 , for $g \in B$ with $g\left(x_{1}\right)=0$ there exists $h \in B$ such that $g=\psi_{1} h$. Hence $T B=\left\{g \in B ; g\left(x_{1}\right)=0\right\}$, so that T is a codimension 1 linear isometry on B.

Suppose that B admits a codimension 1 linear isometry T. Then by the work of Araujo and Font [1] , there exist a homeomorphism φ of $M\left(L^{\infty}\right)$ and a unimodular function ψ on $M\left(L^{\infty}\right)$ such that

$$
\begin{equation*}
(T f)(x)=\psi(x) f(\varphi(x)) \quad \text { for all } x \in M\left(L^{\infty}\right) \text { and } f \in B \tag{2.9}
\end{equation*}
$$

Since $1 \in B$, we have

$$
\begin{equation*}
\psi \in B \tag{2.10}
\end{equation*}
$$

First, we prove that

$$
\begin{equation*}
B \circ \varphi \subset B \tag{2.11}
\end{equation*}
$$

To prove this, suppose not. Let A be the Douglas algebra generated by B and $B \circ \varphi$. Then $B \subsetneq A$. By (2.9) and (2.10), we have $\psi A \subset B$. Hence by [15, Theorem 1],

$$
\begin{equation*}
M(B) \backslash M(A) \subset Z_{B}(\psi) \tag{2.12}
\end{equation*}
$$

By Lemma 2, $M(A) \cap \overline{(M(B) \backslash M(A))}$ is an uncountable set. Let $y \in M(A) \cap$ $\overline{(M(B) \backslash M(A))}$ and $f \in B$. Since $\psi, f \circ \varphi \in A$ and $y \in M(A)$, we have $(T f)(y)=$ $(\psi f \circ \varphi)(y)=\psi(y)(f \circ \varphi)(y)$. Since $y \in \overline{M(B) \backslash M(A)}$, by $(2.12) \psi(y)=0$. Hence $(T f)(y)=0$, so that

$$
M(A) \cap \overline{(M(B) \backslash M(A))} \subset Z_{A}(T f) \subset Z_{B}(T f) \quad \text { for every } f \in B
$$

By [1. Proposition 3.1], $\bigcap\left\{Z_{B}(T f) ; f \in B\right\}$ is a finite set. Hence by the above, $M(A) \cap \overline{(M(B) \backslash M(A))}$ is a finite set. This is a contradiction. Thus we obtain (2.11).

Next, we prove that

$$
\begin{equation*}
\bar{\psi} \notin B \tag{2.13}
\end{equation*}
$$

To prove this, suppose not. Then $\bar{\psi} \in B$ and ψ is invertible in B. Put $T_{0} f=\bar{\psi} T f$ for $f \in B$. Then T_{0} is a codimension 1 linear isometry on B. By (2.9), $T_{0} B=B \circ \varphi$
and there exists $\lambda \in B$ such that $B=B \circ \varphi+\mathbf{C} \lambda$ and $\lambda \notin B \circ \varphi$, where \mathbf{C} is the set of complex numbers. Then we have

$$
B \circ \varphi^{-1}=B+\mathbf{C} \lambda \circ \varphi^{-1} \quad \text { and } \quad \lambda \circ \varphi^{-1} \notin B
$$

Since φ is a homeomorphism of $M\left(L^{\infty}\right), B \circ \varphi^{-1}$ is a closed subalgebra of L^{∞} and $H^{\infty} \subset B$. Then by the above, $B \circ \varphi^{-1}$ is a Douglas algebra which contains B properly. And B is a linear subspace of $B \circ \varphi^{-1}$ of codimension 1. By Chang and Marshall's theorem, there exists an interpolating Blaschke product b such that $\bar{b} \in B \circ \varphi^{-1}$ and $\bar{b} \notin B$. Since $\bar{b}^{n} \in B \circ \varphi^{-1} \backslash B$ and $\left\{\bar{b}^{n} ; n=1,2, \ldots\right\}$ is linearly independent, B is not a linear subspace of $B \circ \varphi^{-1}$ of codimension 1 . This is a contradiction. Thus we get (2.13).

By (2.13), there exists $x_{0} \in M(B)$ such that $\psi\left(x_{0}\right)=0$. By (2.9), (2.10), and (2.11), $T f=0$ on $Z_{B}(\psi)$ for every $f \in B$. Then we have

$$
\begin{equation*}
Z_{B}(\psi)=\left\{x_{0}\right\} \tag{2.14}
\end{equation*}
$$

For, if $y \in Z_{B}(\psi)$ and $y \neq x_{0}$, there exist $f, g \in B$ such that $f(y)=1, f\left(x_{0}\right)=0$, and $g(y)=0, g\left(x_{0}\right)=1$. Then $f, g \notin T B$ and f, g are linear independent. Hence T is not a codimension 1 linear isometry.

Also we have

$$
\begin{equation*}
T B=\left\{f \in B ; f\left(x_{0}\right)=0\right\} \tag{2.15}
\end{equation*}
$$

since $T B \subset\left\{f \in B ; f\left(x_{0}\right)=0\right\}$ and $T B$ is a linear subspace of B of codimension 1 .
Then we have

$$
\begin{array}{rlc}
\psi B & \subset\left\{f \in B ; f\left(x_{0}\right)=0\right\} & \text { by }(2.14) \\
& =\psi B \circ \varphi & \text { by }(2.9) \text { and }(2.15) \\
& \subset \psi B & \text { by }(2.11) .
\end{array}
$$

Thus we get

$$
\begin{gather*}
B=B \circ \varphi \tag{2.16}\\
\psi B=\left\{f \in B ; f\left(x_{0}\right)=0\right\} \tag{2.17}
\end{gather*}
$$

We prove that $B \neq B_{b}$. By (2.13), it is sufficient to prove $\bar{\psi} \in B_{b}$. To show this, let $\left\{f_{n}\right\}_{n} \subset B$ such that $f_{n} \rightarrow 0$ weakly in B. Then $f_{n}\left(x_{0}\right) \rightarrow 0$. By (2.17), $f_{n}-f_{n}\left(x_{0}\right) \in \psi B$. Then there exists $g_{n} \in B$ such that $f_{n}-f_{n}\left(x_{0}\right)=\psi \underline{g_{n}}$. Hence we have $\left\|f_{n} \bar{\psi}-B\right\| \leq\left\|f_{n} \bar{\psi}-g_{n}\right\| \leq\left|f_{n}\left(x_{0}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$. Therefore $\bar{\psi} \in B_{b}$.

Now we complete the proof. Condition (i) follows from (2.16). Since $x_{0} \in$ $M(B), B_{\mid \operatorname{supp} \mu_{x_{0}}}=\left(H^{\infty}\right)_{\mid \operatorname{supp} \mu_{x_{0}}}$. By (2.10), there exists $h \in H^{\infty}$ such that $h_{\mid \operatorname{supp} \mu_{x_{0}}}=\psi_{\mid \operatorname{supp} \mu_{x_{0}}}$. If ord $\left(h, x_{0}\right) \geq 2$, there is a factorization $h=h_{1} h_{2}$ such that $h_{1}\left(x_{0}\right)=h_{2}\left(x_{0}\right)=0$ and $h_{1}, h_{2} \in H^{\infty}$ (see [11, Section 5]). Since $h_{i} \in B$, by (2.17) we have $h_{i}=\psi g_{i}$ for some $g_{i} \in B$ for $i=1,2$. Then $h=\psi^{2} g_{1} g_{2}$. Hence $\psi_{\mid \operatorname{supp} \mu_{x_{0}}}=\left(\psi^{2} g_{1} g_{2}\right)_{\mid \operatorname{supp} \mu_{x_{0}}}$. Since $|\psi|=1$ on $M\left(L^{\infty}\right), 1=\left(\psi g_{1} g_{2}\right)_{\mid \operatorname{supp} \mu_{x_{0}}}$. Since $\left(\psi g_{1} g_{2}\right)\left(x_{0}\right)=0$, we have a contradiction. Hence ord $\left(h, x_{0}\right)=1$ and x_{0} is a nontrivial point. Therefore by (2.14) and [12, Corollary 4.5], there are an interpolating Blaschke product b and an invertible unimodular function u in B such that $\psi=u b$ and $Z_{B}(b)=\left\{x_{0}\right\}$. Then by [8, Theorem 3.2], $\{y \in M(B) ;|b(y)|<1\}=P\left(x_{0}\right)$. This completes the proof.

References

[1] J. Araujo and J. J. Font, Codimension 1 linear isometries on function algebras, Proc. Amer. Math. Soc. 127(1999), 2273-2281. MR 99j:46059
[2] J. Araujo and J. J. Font, Linear isometries between subspaces of continuous functions, Trans. Amer. Math. Soc. 349(1997), 413-428. MR 97d:46026
[3] S. Axler and P. Gorkin, Division in Douglas algebras, Michigan Math. J. 31(1984), 89-94. MR 85h:46075
[4] S.-Y. Chang, A characterization of Douglas algebras, Acta Math. 137(1976), 81-89. MR 55:1074a
[5] J. Cima and R. Timoney, The Dunford Pettis property for certain planner uniform algebras, Michigan Math. J. 34(1987), 99-104. MR 88e:46023
[6] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. MR 83g:30037
[7] P. Gorkin, K. Izuchi, and R. Mortini, Bourgain algebras of Douglas algebras, Canad. J. Math. 44(1992), 797-804. MR 94c:46104
[8] P. Gorkin, H. -M. Lingenberg, and R. Mortini, Homeomorphic disks in the spectrum of H^{∞}, Indiana Univ. Math. J. 39(1990), 961-983. MR 92b:46082
[9] C. Guillory, K. Izuchi and D. Sarason, Interpolating Blaschke products and division in Douglas algebras, Proc. Roy. Irish Acad. Sect. A 84(1984), 1-7. MR 86j:46054
[10] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, N.J., 1962. MR 24:A2844
[11] K. Hoffman, Bounded analytic functions and Gleason parts, Michigan Math. J. 40(1993), 53-75.
[12] K. Izuchi, Interpolating Blaschke products and factorization theorems, J. London Math. Soc. (2) 50(1994), 547-567. MR 95k:46086
[13] D. Marshall, Subalgebras of L^{∞} containing H^{∞}, Acta Math. 137(1976), 91-98. MR 55:10746
[14] D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79(1973), 286299. MR 48:2777
[15] R. Younis, Division in Douglas algebras and some applications, Arch. Math. 45(1985), 555560. MR 87b:46059

Department of Mathematics, Nifgata University, Nifgata 950-2181, Japan
E-mail address: izuchi@math.sc.niigata-u.ac.jp

[^0]: Received by the editors November 15, 1999.
 2000 Mathematics Subject Classification. Primary 46J15, 47B38.
 Supported by Grant-in-Aid for Scientific Research (No.10440039), Ministry of Education, Science and Culture.

