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DOUGLAS ALGEBRAS
WHICH ADMIT CODIMENSION 1 LINEAR ISOMETRIES

KEIJI IZUCHI

(Communicated by Joseph A. Ball)

Abstract. Let B be a Douglas algebra and let Bb be its Bourgain algebra. It
is proved that B admits a codimension 1 linear isometry if and only if B 6= Bb.
This answers the conjecture of Araujo and Font.

1. Introduction

Let H∞ be the Banach algebra of bounded analytic functions on the unit disk
D. Identifying a function in H∞ with its boundary function, we view H∞ as the
closed subalgebra of L∞, the usual Lebesgue space on the unit circle ∂D. A closed
subalgebra B with H∞ ⊂ B ⊂ L∞ is called a Douglas algebra. In [1], Araujo
and Font studied codimension 1 linear isometries of Douglas algebras. They noted
that H∞ has the codimension 1 linear isometry; Tf = zf, f ∈ H∞, where z is the
identity function on D, and L∞ does not have any codimension 1 linear isometries,
(see also [2]). They also gave the conjecture that proper Douglas algebras admit
no codimension 1 linear isometries. In this paper, we give a characterization of
Douglas algebras which admit codimension 1 linear isometries.

First, recall the structure of Douglas algebras. For a Douglas algebra B, we
denote by M(B) the set of non-zero multiplicative linear functionals of B. We
consider the weak∗-topology on M(B). We identify a function in B with its Gelfand
transform. Then we may think of M(B) as a compact subset of M(H∞). It is
known that M(L∞) is the Shilov boundary of H∞. For a subset E of M(H∞), we
denote by E the closure of E in M(H∞). For a function f in B, let ZB(f) = {x ∈
M(B); f(x) = 0}. For x ∈ M(H∞), there is a unique probability measure µx on
M(L∞) such that f(x) =

∫
M(L∞) f dµx for every f ∈ H∞. We denote by suppµx

the closed support set of µx.
A function f ∈ H∞ is called inner if |f | = 1 on M(L∞). Let {zn}n be a sequence

in D with
∑∞
n=1(1 − |zn|) < ∞. Then there is the associated Blaschke product b

given by

b(z) =
∞∏
n=1

−zn
|zn|

z − zn
1− znz

, z ∈ D.
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A sequence {zn}n in D is called interpolating if for every bounded sequence of
complex numbers {an}n there exists h ∈ H∞ such that h(zn) = an for every n. A
Blaschke product is called interpolating if its zero sequence is interpolating. It is
known that a Blaschke product is inner (see Hoffman’s book [10]).

The smallest Douglas algebra except H∞ is H∞ + C, where C is the space of
continuous functions on ∂D, and it is known that M(H∞+C) = M(H∞) \D (see
[14]). Chang [4] and Marshall [13] proved that if B is a Douglas algebra, then B =
H∞[bα;α ∈ Λ], where {bα}α∈Λ is a family of some interpolating Blaschke products
and M(B) =

⋂
α∈Λ{x ∈ M(H∞); |bα(x)| = 1}. And they showed that for Douglas

algebras A and B, it holds that A ⊂ B if and only if M(B) ⊂M(A). By Chang and
Marshall’s theorem, we have that x ∈M(B) if and only if B|suppµx = (H∞)|suppµx .
Put

Bsuppµx = {f ∈ L∞; f|suppµx ∈ B|suppµx}.
Then Bsuppµx is a Douglas algebra and

M(Bsuppµx) = M(L∞) ∪ {y ∈M(B); suppµy ⊂ suppµx}.
A nice reference for Douglas algebras is Garnett’s book [6].

Next, recall the work of Hoffman [11]. For x, y ∈M(H∞), put

ρ(x, y) = sup{|f(y)|; f ∈ H∞, f(x) = 0, ‖f‖∞ ≤ 1}.
For x ∈ M(H∞), let P (x) = {y ∈ M(H∞); ρ(x, y) < 1}. When P (x) = {x}, a
point x is called trivial. When P (x) 6= {x}, in this case x is called non-trivial; there
is a one-to-one continuous map Lx from D onto P (x) such that f ◦ Lx ∈ H∞ for
every f ∈ H∞ and Lx(0) = x. Moreover if f(x) = 0, we can define the order of
zero at x, ord (f, x), by the usual order of zero of f ◦ Lx at z = 0. When f = 0 on
P (x), we put ord (f, x) =∞.

For a Douglas algebra B, we denote by Bb the set of f in L∞ such that if fn → 0
weakly in B, then ‖ffn +B‖ → 0. Cima and Timoney [5] studied Bb in a general
setting. By their results, Bb is a Douglas algebra and B ⊂ Bb. They called Bb the
Bourgain algebra of B. Douglas algebras B satisfying B 6= Bb are characterized in
[7]. In this paper, we prove the following theorem.

Theorem. Let B be a Douglas algebra. Then B admits a codimension 1 linear
isometry T if and only if Bb 6= B. In this case T has the following form: Tf =
(ub)(f ◦ ϕ), f ∈ B, where u is an invertible unimodular function in B, b is an
interpolating Blaschke product, and ϕ is a homeomorphism of M(L∞) satisfying
the following conditions.

(i) B ◦ ϕ = B.
(ii) {y ∈M(B); |b(y)| < 1} = P (x0) for some x0 ∈M(B).

2. Proof of the theorem

First of all, we show a counterexample for Araujo and Font’s conjecture. A
Blaschke product b with zeros {zn}n is called sparse (or thin) if

lim
n→∞

∏
j:j 6=n

∣∣∣ zj − zn
1− znzj

∣∣∣ = 1.

Let x0 ∈ ZH∞+C(b) and B = H∞suppµx0
. Then {y ∈M(B); |b(y)| < 1} = P (x0) and

bB = {g ∈ B; g(x0) = 0} (see [9]). Hence Tf = bf, f ∈ B, is a codimension 1 linear
isometry on B.
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To prove our theorem, we need two lemmas.

Lemma 1. Let A and B be Douglas algebras with B ( A. Then M(B) \M(A) is
not a closed subset of M(B).

Proof. Since B ( A, by Chang and Marshall’s theorem M(A) ⊂M(B) and M(B)\
M(A) 6= ∅. To prove our assertion, suppose not. Then M(B) \M(A) is an open-
closed subset of M(B). Hence by Shilov’s idempotent theorem, there is χ ∈ B
such that χ = 1 on M(B) \M(A) and χ = 0 on M(A). Since M(L∞) ⊂ M(A),
χ = 0 on M(L∞). Thus we get χ = 0 on M(B) and M(B) \M(A) = ∅. This is a
contradiction.

Lemma 2. Let A and B be Douglas algebras with B ( A. Then

M(A) ∩M(B) \M(A)

contains uncountably many distinct points.

Proof. By Chang and Marshall’s theorem, there is an interpolating Blaschke prod-
uct q such that

q ∈ A and q /∈ B.(2.1)

Then

∅ 6= {y ∈M(B); |q(y)| < 1} ⊂M(B) \M(A).(2.2)

We have

q(M(B)) = D ∪ ∂D.(2.3)

For, if ζ ∈ D, then qζ = (q− ζ)/(1− ζq) is an inner function and qζ is not invertible
in B. Hence there is x ∈M(B) such that qζ(x) = 0. Thus we get ζ ∈ q(M(B)).

Let

Γ = {y ∈M(B); |q(y)| < 1} \ {y ∈M(B); |q(y)| < 1}.(2.4)

Then by (2.3), we have q(Γ) = ∂D. For each ξ ∈ ∂D, take xξ ∈ Γ such that
q(xξ) = ξ. Then q = ξ on suppµxξ and

suppµxξ ∩ suppµxη = ∅ if ξ, η ∈ ∂D and ξ 6= η.(2.5)

We shall prove that for each ξ ∈ ∂D there exists yξ ∈M(B) such that

suppµyξ ⊂ suppµxξ and yξ ∈M(A) ∩M(B) \M(A).(2.6)

Then by (2.5), points in {yξ; ξ ∈ ∂D} are distinct and we get our assertion.
We shall show the existence of yξ satisfying (2.6). If xξ ∈M(A), by (2.1) we have

|q(xξ)| = 1. Since xξ ∈ Γ, by (2.4) we have xξ ∈ {y ∈M(B); |q(y)| < 1}. Hence by
(2.2), xξ ∈ M(B) \M(A). Thus xξ ∈ M(A) ∩M(B) \M(A). Put yξ = xξ; then
(2.6) holds.

Next, suppose that xξ /∈ M(A). Put A1 = Asuppµxξ
and B1 = Bsuppµxξ

. Then
B1 ⊂ A1. Since xξ ∈ M(B), B1 = (H∞)suppµxξ

. Since xξ /∈ M(B), A1 6=
(H∞)suppµxξ

. Hence we have B1 6= A1. By Lemma 1, there exists a point yξ such
that

yξ ∈M(A1) ∩M(B1) \M(A1).(2.7)
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We have

M(B1) = M(L∞) ∪ {y ∈M(B); suppµy ⊂ suppµxξ},

M(A1) = M(L∞) ∪ {y ∈M(A); suppµy ⊂ suppµxξ}.
By the above

M(B1) \M(A1) = {y ∈M(B) \M(A); suppµy ⊂ suppµxξ}.(2.8)

Hence by (2.7), we have suppµyξ ⊂ suppµxξ . Since M(A1) ⊂ M(A) and by (2.7)
and (2.8), we have yξ ∈M(A) ∩M(B) \M(A).

Proof of the theorem. Suppose that Bb 6= B. By Chang and Marshall’s theorem,
there is an interpolating Blaschke product ψ such that ψ ∈ Bb and ψ /∈ B. By
[7, Theorem 2], ZB(ψ) is a finite set. Let ZB(ψ) = {x1, x2, . . . , xn} such that
xi 6= xj , i 6= j. Take an open subset V of M(H∞) such that x1 ∈ V and xj /∈ V
for j = 2, 3, . . . , n. Let {zn}n be the zeros of ψ in D. Let ψ1 be the subproduct of
ψ whose zeros are {zn}n ∩ V . By [10, p. 205], ZH∞(ψ) = {zn}n, so that we have
ZB(ψ1) = {x1}. Let Tf = ψ1f for f ∈ B. Then T is a linear isometry on B and
TB ⊂ {g ∈ B; g(x1) = 0}. By [3, 9], for g ∈ B with g(x1) = 0 there exists h ∈ B
such that g = ψ1h. Hence TB = {g ∈ B; g(x1) = 0}, so that T is a codimension 1
linear isometry on B.

Suppose that B admits a codimension 1 linear isometry T . Then by the work of
Araujo and Font [1], there exist a homeomorphism ϕ of M(L∞) and a unimodular
function ψ on M(L∞) such that

(Tf)(x) = ψ(x)f(ϕ(x)) for all x ∈M(L∞) and f ∈ B.(2.9)

Since 1 ∈ B, we have

ψ ∈ B.(2.10)

First, we prove that

B ◦ ϕ ⊂ B.(2.11)

To prove this, suppose not. Let A be the Douglas algebra generated by B and
B ◦ϕ. Then B ( A. By (2.9) and (2.10), we have ψA ⊂ B. Hence by [15, Theorem
1],

M(B) \M(A) ⊂ ZB(ψ).(2.12)

By Lemma 2, M(A) ∩ (M(B) \M(A)) is an uncountable set. Let y ∈ M(A) ∩
(M(B) \M(A)) and f ∈ B. Since ψ, f ◦ ϕ ∈ A and y ∈M(A), we have (Tf)(y) =
(ψf ◦ ϕ)(y) = ψ(y)(f ◦ ϕ)(y). Since y ∈M(B) \M(A), by (2.12) ψ(y) = 0. Hence
(Tf)(y) = 0, so that

M(A) ∩ (M(B) \M(A)) ⊂ ZA(Tf) ⊂ ZB(Tf) for every f ∈ B.
By [1, Proposition 3.1],

⋂
{ZB(Tf); f ∈ B} is a finite set. Hence by the above,

M(A) ∩ (M(B) \M(A)) is a finite set. This is a contradiction. Thus we obtain
(2.11).

Next, we prove that

ψ /∈ B.(2.13)

To prove this, suppose not. Then ψ ∈ B and ψ is invertible in B. Put T0f = ψTf
for f ∈ B. Then T0 is a codimension 1 linear isometry on B. By (2.9), T0B = B ◦ϕ
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and there exists λ ∈ B such that B = B ◦ ϕ + Cλ and λ /∈ B ◦ ϕ, where C is the
set of complex numbers. Then we have

B ◦ ϕ−1 = B + Cλ ◦ ϕ−1 and λ ◦ ϕ−1 /∈ B.

Since ϕ is a homeomorphism of M(L∞), B ◦ ϕ−1 is a closed subalgebra of L∞

and H∞ ⊂ B. Then by the above, B ◦ ϕ−1 is a Douglas algebra which contains
B properly. And B is a linear subspace of B ◦ ϕ−1 of codimension 1. By Chang
and Marshall’s theorem, there exists an interpolating Blaschke product b such that
b ∈ B ◦ ϕ−1 and b /∈ B. Since b

n ∈ B ◦ ϕ−1 \ B and {bn;n = 1, 2, . . .} is linearly
independent, B is not a linear subspace of B ◦ ϕ−1 of codimension 1. This is a
contradiction. Thus we get (2.13).

By (2.13), there exists x0 ∈ M(B) such that ψ(x0) = 0. By (2.9), (2.10), and
(2.11), Tf = 0 on ZB(ψ) for every f ∈ B. Then we have

ZB(ψ) = {x0}.(2.14)

For, if y ∈ ZB(ψ) and y 6= x0, there exist f, g ∈ B such that f(y) = 1, f(x0) = 0,
and g(y) = 0, g(x0) = 1. Then f, g /∈ TB and f, g are linear independent. Hence T
is not a codimension 1 linear isometry.

Also we have

TB = {f ∈ B; f(x0) = 0}(2.15)

since TB ⊂ {f ∈ B; f(x0) = 0} and TB is a linear subspace of B of codimension 1.
Then we have

ψB ⊂ {f ∈ B; f(x0) = 0} by (2.14)
= ψB ◦ ϕ by (2.9) and (2.15)
⊂ ψB by (2.11).

Thus we get

B = B ◦ ϕ,(2.16)

ψB = {f ∈ B; f(x0) = 0}.(2.17)

We prove that B 6= Bb. By (2.13), it is sufficient to prove ψ ∈ Bb. To show
this, let {fn}n ⊂ B such that fn → 0 weakly in B. Then fn(x0) → 0. By (2.17),
fn − fn(x0) ∈ ψB. Then there exists gn ∈ B such that fn − fn(x0) = ψgn. Hence
we have ‖fnψ −B‖ ≤ ‖fnψ − gn‖ ≤ |fn(x0)| → 0 as n→∞. Therefore ψ ∈ Bb.

Now we complete the proof. Condition (i) follows from (2.16). Since x0 ∈
M(B), B|suppµx0

= (H∞)|suppµx0
. By (2.10), there exists h ∈ H∞ such that

h|suppµx0
= ψ|suppµx0

. If ord (h, x0) ≥ 2, there is a factorization h = h1h2 such
that h1(x0) = h2(x0) = 0 and h1, h2 ∈ H∞ (see [11, Section 5]). Since hi ∈ B, by
(2.17) we have hi = ψgi for some gi ∈ B for i = 1, 2. Then h = ψ2g1g2. Hence
ψ|suppµx0

= (ψ2g1g2)|suppµx0
. Since |ψ| = 1 on M(L∞), 1 = (ψg1g2)|suppµx0

. Since
(ψg1g2)(x0) = 0, we have a contradiction. Hence ord(h, x0) = 1 and x0 is a non-
trivial point. Therefore by (2.14) and [12, Corollary 4.5], there are an interpolating
Blaschke product b and an invertible unimodular function u in B such that ψ = ub
and ZB(b) = {x0}. Then by [8, Theorem 3.2], {y ∈ M(B); |b(y)| < 1} = P (x0).
This completes the proof.
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