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DOUGLAS ALGEBRAS
WHICH ADMIT CODIMENSION 1 LINEAR ISOMETRIES
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(Communicated by Joseph A. Ball)

ABSTRACT. Let B be a Douglas algebra and let By, be its Bourgain algebra. It
is proved that B admits a codimension 1 linear isometry if and only if B # Bj,.
This answers the conjecture of Araujo and Font.

1. INTRODUCTION

Let H* be the Banach algebra of bounded analytic functions on the unit disk
D. Identifying a function in H* with its boundary function, we view H*® as the
closed subalgebra of L, the usual Lebesgue space on the unit circle 9D. A closed
subalgebra B with H*® C B C L* is called a Douglas algebra. In [1], Araujo
and Font studied codimension 1 linear isometries of Douglas algebras. They noted
that H has the codimension 1 linear isometry; T f = zf, f € H*™, where z is the
identity function on D, and L* does not have any codimension 1 linear isometries,
(see also [2]). They also gave the conjecture that proper Douglas algebras admit
no codimension 1 linear isometries. In this paper, we give a characterization of
Douglas algebras which admit codimension 1 linear isometries.

First, recall the structure of Douglas algebras. For a Douglas algebra B, we
denote by M (B) the set of non-zero multiplicative linear functionals of B. We
consider the weak*-topology on M (B). We identify a function in B with its Gelfand
transform. Then we may think of M(B) as a compact subset of M(H>). It is
known that M (L) is the Shilov boundary of H*. For a subset E of M (H>), we
denote by E the closure of E in M(H®°). For a function f in B, let Zg(f) = {x €
M(B); f(z) = 0}. For x € M(H®), there is a unique probability measure p, on
M (L) such that f(x fM(Lx) fdu, for every f € H*. We denote by supp fi,
the closed support set of Ly

A function f € H* is called inner if | f| = 1 on M (L*). Let {z,}» be a sequence
in D with 377 (1 — |2,]) < oo. Then there is the associated Blaschke product b
given by

7, z— 2
H - zeD.

lzn| 1 —Zn2’
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A sequence {z,}, in D is called interpolating if for every bounded sequence of
complex numbers {ay }, there exists h € H*> such that h(z,) = a,, for every n. A
Blaschke product is called interpolating if its zero sequence is interpolating. It is
known that a Blaschke product is inner (see Hoffman’s book [10]).

The smallest Douglas algebra except H> is H* + C, where C' is the space of
continuous functions on 0D, and it is known that M (H*>® + C) = M(H*)\ D (see
[14]). Chang [4] and Marshall [13] proved that if B is a Douglas algebra, then B =
H>®[by; € A}, where {bs}aea is a family of some interpolating Blaschke products
and M (B) = (yepiz € M(H®);[ba(x)] = 1}. And they showed that for Douglas
algebras A and B, it holds that A C B if and only if M (B) C M(A). By Chang and
Marshall’s theorem, we have that 2 € M (B) if and only if Bjsupp o = (H)|supp s -
Put

Biupp e = 1 € L5 flsupp o € Blsupp ps }-

Then Bgupp ., is a Douglas algebra and
M (Bsuppp,) = M(L>*) U{y € M(B);supp py C Supp fa }-

A nice reference for Douglas algebras is Garnett’s book [6].
Next, recall the work of Hoffman [I1]. For z,y € M(H®), put

p(z,y) =sup{|f(y)l; f € H™, f(x) = 0,]|flloc <1}
For x € M(H®), let P(x) = {y € M(H*);p(z,y) < 1}. When P(z) = {z}, a
point z is called trivial. When P(z) # {z}, in this case z is called non-trivial; there
is a one-to-one continuous map L, from D onto P(z) such that fo L, € H* for
every f € H*® and L,;(0) = x. Moreover if f(z) = 0, we can define the order of
zero at x, ord (f, x), by the usual order of zero of f o L, at z=0. When f =0 on
P(z), we put ord (f,z) = oo.

For a Douglas algebra B, we denote by By the set of f in L°° such that if f,, — 0
weakly in B, then || ff, + B|| — 0. Cima and Timoney [5] studied Bj in a general
setting. By their results, By is a Douglas algebra and B C By. They called B the
Bourgain algebra of B. Douglas algebras B satisfying B # By, are characterized in
[7. In this paper, we prove the following theorem.

Theorem. Let B be a Douglas algebra. Then B admits a codimension 1 linear
isometry T if and only if By # B. In this case T has the following form: Tf =
(ub)(f o p), f € B, where u is an invertible unimodular function in B, b is an
interpolating Blaschke product, and ¢ is a homeomorphism of M (L) satisfying
the following conditions.

(i) Bop=B.

(i) {y € M(B);|b(y)| < 1} = P(xq) for some xo € M(B).

2. PROOF OF THE THEOREM

First of all, we show a counterexample for Araujo and Font’s conjecture. A
Blaschke product b with zeros {z,}, is called sparse (or thin) if

lim [ ‘g = 1.
n—oo 4 1—Znz;
Ju#n
Let xg € Zpgo4c(b) and B = HY . Then {y € M(B);|b(y)| < 1} = P(xo) and

SUpD L

bB = {g € B;g(xo) =0} (see [9]). Hence Tf =bf, f € B, is a codimension 1 linear
isometry on B.
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To prove our theorem, we need two lemmas.

Lemma 1. Let A and B be Douglas algebras with B C A. Then M (B)\ M(A) is
not a closed subset of M(B).

Proof. Since B C A, by Chang and Marshall’s theorem M (A) C M(B) and M (B)\
M(A) # . To prove our assertion, suppose not. Then M (B)\ M(A) is an open-
closed subset of M(B). Hence by Shilov’s idempotent theorem, there is x € B
such that x = 1 on M(B)\ M(A) and x = 0 on M(A). Since M(L*) C M(A),
X =0 on M(L*>). Thus we get x =0 on M(B) and M (B)\ M(A) = 0. This is a
contradiction.

Lemma 2. Let A and B be Douglas algebras with B C A. Then
M(A)NM(B)\ M(A)
contains uncountably many distinct points.

Proof. By Chang and Marshall’s theorem, there is an interpolating Blaschke prod-
uct ¢ such that

(2.1) geA and g¢ B.

Then

(2:2) 0 # {y € M(B):|q(y)| < 1} € M(B)\ M(A).
We have

(2.3) q(M(B)) =D UOD.

For, if ¢ € D, then ¢; = (¢—¢)/(1—(g) is an inner function and g, is not invertible

in B. Hence there is x € M (B) such that g¢c(z) = 0. Thus we get ¢ € ¢(M(B)).
Let

(2.4) I'={y e M(B);lq(y)l <1}\{y € M(B);lq(y)| < 1}.

Then by (2.3), we have ¢(I') = 9D. For each £ € 9D, take z¢ € I such that

q(z¢) = & Then g = £ on supp pz, and

(2.5) SUPP fze N SUPD fho, = O if £, € OD and & # 1.
We shall prove that for each £ € D there exists ye € M(B) such that
(2.6) SUpp fiy, C supp iz, and ye € M(A) N M(B) \ M(A).

Then by (2.5), points in {ye; & € 0D} are distinct and we get our assertion.

We shall show the existence of ye satisfying (2.6). If z¢ € M(A), by (2.1) we have
lg(z¢)| = 1. Since ¢ € T', by (2.4) we have z¢ € {y € M(B);|q(y)| < 1}. Hence by
(2.2), ze € M(B)\ M(A). Thus z¢ € M(A)N M(B)\ M(A). Put y¢ = z¢; then
(2.6) holds.

Next, suppose that ¢ ¢ M(A). Put A; = Asuppuw5 and B; = Bsuppu%. Then
B, C A;. Since z¢ € M(B), By = (Hoo)suppux£~ Since z¢ ¢ M(B), A1 #
(H*)supp o Hence we have By # A;. By Lemma 1, there exists a point ye such
that

(2.7) ye € M (A1) N M (By)\ M(Ay).
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We have
M(B1) = M(L>*)U{y € M(B);supp py C supp fiz, },

M(Ay) = M(L*>)U{y € M(A);supp jt, C Supp fz, }-
By the above
(2.8) M(By)\ M(Ay) ={y € M(B)\ M(A);supp piy C Supp fla, }-
Hence by (2.7), we have supp j,, C supp pg,. Since M(A;) C M(A) and by (2.7)
and (2.8), we have ye € M(A)NM(B)\ M(A).

Proof of the theorem. Suppose that By, # B. By Chang and Marshall’s theorem,
there is an interpolating Blaschke product ¢ such that ) € By and ¢ ¢ B. By
[1, Theorem 2], Zp(v) is a finite set. Let Zp(y) = {z1,x2,...,2,} such that
x; # xj, i # j. Take an open subset V of M(H>) such that x; € V and x; ¢ V
for j =2,3,...,n. Let {z,}, be the zeros of ¢ in D. Let 91 be the subproduct of
1 whose zeros are {zp}, N'V. By [10, p. 205], Zg~(¢) = {zn}n, so that we have
Zp(1) ={x1}. Let Tf =1 f for f € B. Then T is a linear isometry on B and
TB C {g € B;g(x1) = 0}. By [3, ], for g € B with g(x1) = 0 there exists h € B
such that g = ¢)1h. Hence TB = {g € B;g(x1) = 0}, so that T is a codimension 1
linear isometry on B.

Suppose that B admits a codimension 1 linear isometry 7. Then by the work of
Araujo and Font [1], there exist a homeomorphism ¢ of M(L*°) and a unimodular
function ¢ on M (L) such that

(2.9) (Tf)(x) =) f(p(x)) forallx e M(L*®) and f € B.
Since 1 € B, we have
(2.10) ¥ € B.
First, we prove that
(2.11) Boy CB.

To prove this, suppose not. Let A be the Douglas algebra generated by B and
Boy. Then B C A. By (2.9) and (2.10), we have ¢»A C B. Hence by [15, Theorem
1],

(2.12) M(B)\ M(A) C Zg(¥).
By Lemma 2, M(A) N (M(B)\ M(A)) is an uncountable set. Let y € M(A) N
(M(B)\ M(A)) and f € B. Since ¢, fop € A and y € M(A), we have (Tf)(y) =
(W f o9)(y) = »(y)(f o p)(y). Since y € M(B)\ M(A), by (2.12) ¢(y) = 0. Hence
(Tf)(y) =0, so that

MA)N(M(B)\M(A)) C Zs(Tf)C Zg(Tf) forevery f € B.

By [II, Proposition 3.1], ({Zp(Tf); f € B} is a finite set. Hence by the above,
M((A) N (M(B)\ M(A)) is a finite set. This is a contradiction. Thus we obtain
(2.11).

Next, we prove that

(2.13) v ¢ B.

To prove this, suppose not. Then 1) € B and 1 is invertible in B. Put Ty f = YT f
for f € B. Then T} is a codimension 1 linear isometry on B. By (2.9), ToB = Bogp
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and there exists A € B such that B = Bo ¢+ C\ and A ¢ B o ¢, where C is the
set of complex numbers. Then we have

Bop '=B+Clop ! and Moy '¢B.

Since ¢ is a homeomorphism of M (L>), B o ¢! is a closed subalgebra of L

and H>® C B. Then by the above, B o ¢~ ! is a Douglas algebra which contains
B properly. And B is a linear subspace of B o ¢~! of codimension 1. By Chang
and Marshall’s theorem, there exists an interpolating Blaschke product b such that
beBop landb ¢ B. Since b" € Bop '\ Band {b";n =1,2,...} is lincarly
independent, B is not a linear subspace of B o ¢~ ! of codimension 1. This is a
contradiction. Thus we get (2.13).

By (2.13), there exists g € M(B) such that ¢(z9) = 0. By (2.9), (2.10), and
(2.11), Tf =0 on Zp(¢) for every f € B. Then we have

(2.14) Zp(¢) = {xo}-

For, if y € Zp(¢) and y # xo, there exist f,g € B such that f(y) =1, f(xo) = 0,
and g(y) =0, g(xg) = 1. Then f,g ¢ TB and f, g are linear independent. Hence T
is not a codimension 1 linear isometry.

Also we have

(2.15) TB = {f € B; f(zo0) = 0}

since TB C {f € B; f(xo) = 0} and T'B is a linear subspace of B of codimension 1.
Then we have

vB C {f € B;f(x) =0} by (2.14)
= YBoy by (2.9) and (2.15)
Cc B by (2.11).
Thus we get
(2.16) B =DBogy,
(2.17) ¥B = {f € B; f(zo) = 0}.

We prove that B # B,. By (2.13), it is sufficient to prove 1 € B,. To show
this, let {fn}n C B such that f,, — 0 weakly in B. Then f,(z¢) — 0. By (2.17),
fn — fn(zo) € ¥B. Then there exists g, € B such that f, — fn(z¢) = ¥g,. Hence
we have || f,¢0 — B|| < || fnth — gnll < |fn(z0)| — 0 as n — oo. Therefore 1 € By,

Now we complete the proof. Condition (i) follows from (2.16). Since zy €
M(B), Bisupp oy, = (Hm)lsuppumo' By (2.10), there exists h € H* such that
Pisupp pmy = Ylsupppuag- 1 ord (h,zg) > 2, there is a factorization h = hihg such
that hi(zo) = ha(xo) = 0 and hy, hy € H* (see [I1} Section 5]). Since h; € B, by
(2.17) we have h; = 1g; for some g; € B for i = 1,2. Then h = 1%2g;g>. Hence
w|suppu$0 = (w29192)|supppmo~ Since |1/1| =1lon M(Loo)a 1= (wgng)\supp;Lm' Since
(¥g192)(x0) = 0, we have a contradiction. Hence ord(h,zo) = 1 and zg is a non-
trivial point. Therefore by (2.14) and [12, Corollary 4.5], there are an interpolating
Blaschke product b and an invertible unimodular function v in B such that ¢ = ub
and Zp(b) = {xo}. Then by [8) Theorem 3.2], {y € M(B);|b(y)| < 1} = P(xo).
This completes the proof.
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