PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 7, Pages 2069–2074 S 0002-9939(00)05842-1 Article electronically published on November 30, 2000

DOUGLAS ALGEBRAS WHICH ADMIT CODIMENSION 1 LINEAR ISOMETRIES

KEIJI IZUCHI

(Communicated by Joseph A. Ball)

ABSTRACT. Let B be a Douglas algebra and let B_b be its Bourgain algebra. It is proved that B admits a codimension 1 linear isometry if and only if $B \neq B_b$. This answers the conjecture of Araujo and Font.

1. INTRODUCTION

Let H^{∞} be the Banach algebra of bounded analytic functions on the unit disk D. Identifying a function in H^{∞} with its boundary function, we view H^{∞} as the closed subalgebra of L^{∞} , the usual Lebesgue space on the unit circle ∂D . A closed subalgebra B with $H^{\infty} \subset B \subset L^{\infty}$ is called a Douglas algebra. In [1], Araujo and Font studied codimension 1 linear isometries of Douglas algebras. They noted that H^{∞} has the codimension 1 linear isometry; Tf = zf, $f \in H^{\infty}$, where z is the identity function on D, and L^{∞} does not have any codimension 1 linear isometries, (see also [2]). They also gave the conjecture that proper Douglas algebras admit no codimension 1 linear isometries. In this paper, we give a characterization of Douglas algebras which admit codimension 1 linear isometries.

First, recall the structure of Douglas algebras. For a Douglas algebra B, we denote by M(B) the set of non-zero multiplicative linear functionals of B. We consider the weak*-topology on M(B). We identify a function in B with its Gelfand transform. Then we may think of M(B) as a compact subset of $M(H^{\infty})$. It is known that $M(L^{\infty})$ is the Shilov boundary of H^{∞} . For a subset E of $M(H^{\infty})$, we denote by \overline{E} the closure of E in $M(H^{\infty})$. For a function f in B, let $Z_B(f) = \{x \in M(B); f(x) = 0\}$. For $x \in M(H^{\infty})$, there is a unique probability measure μ_x on $M(L^{\infty})$ such that $f(x) = \int_{M(L^{\infty})} f d\mu_x$ for every $f \in H^{\infty}$. We denote by $\sup \mu_x$ the closed support set of μ_x .

A function $f \in H^{\infty}$ is called inner if |f| = 1 on $M(L^{\infty})$. Let $\{z_n\}_n$ be a sequence in D with $\sum_{n=1}^{\infty} (1 - |z_n|) < \infty$. Then there is the associated Blaschke product bgiven by

$$b(z) = \prod_{n=1}^{\infty} \frac{-\overline{z}_n}{|z_n|} \frac{z - z_n}{1 - \overline{z}_n z}, \quad z \in D.$$

2000 Mathematics Subject Classification. Primary 46J15, 47B38.

©2000 American Mathematical Society

Received by the editors November 15, 1999.

Supported by Grant-in-Aid for Scientific Research (No.10440039), Ministry of Education, Science and Culture.

KEIJI IZUCHI

A sequence $\{z_n\}_n$ in D is called interpolating if for every bounded sequence of complex numbers $\{a_n\}_n$ there exists $h \in H^\infty$ such that $h(z_n) = a_n$ for every n. A Blaschke product is called interpolating if its zero sequence is interpolating. It is known that a Blaschke product is inner (see Hoffman's book [10]).

The smallest Douglas algebra except H^{∞} is $H^{\infty} + C$, where C is the space of continuous functions on ∂D , and it is known that $M(H^{\infty} + C) = M(H^{\infty}) \setminus D$ (see [14]). Chang [4] and Marshall [13] proved that if B is a Douglas algebra, then $B = H^{\infty}[\overline{b}_{\alpha}; \alpha \in \Lambda]$, where $\{b_{\alpha}\}_{\alpha \in \Lambda}$ is a family of some interpolating Blaschke products and $M(B) = \bigcap_{\alpha \in \Lambda} \{x \in M(H^{\infty}); |b_{\alpha}(x)| = 1\}$. And they showed that for Douglas algebras A and B, it holds that $A \subset B$ if and only if $M(B) \subset M(A)$. By Chang and Marshall's theorem, we have that $x \in M(B)$ if and only if $B_{|\text{supp } \mu_x} = (H^{\infty})_{|\text{supp } \mu_x}$. Put

$$B_{\operatorname{supp}\mu_x} = \{ f \in L^{\infty}; f_{|\operatorname{supp}\mu_x} \in B_{|\operatorname{supp}\mu_x} \}.$$

Then $B_{\text{supp }\mu_x}$ is a Douglas algebra and

$$M(B_{\operatorname{supp}\mu_x}) = M(L^{\infty}) \cup \{ y \in M(B); \operatorname{supp}\mu_y \subset \operatorname{supp}\mu_x \}.$$

A nice reference for Douglas algebras is Garnett's book [6].

Next, recall the work of Hoffman [11]. For $x, y \in M(H^{\infty})$, put

$$\rho(x,y) = \sup\{|f(y)|; f \in H^{\infty}, f(x) = 0, \|f\|_{\infty} \le 1\}.$$

For $x \in M(H^{\infty})$, let $P(x) = \{y \in M(H^{\infty}); \rho(x, y) < 1\}$. When $P(x) = \{x\}$, a point x is called trivial. When $P(x) \neq \{x\}$, in this case x is called non-trivial; there is a one-to-one continuous map L_x from D onto P(x) such that $f \circ L_x \in H^{\infty}$ for every $f \in H^{\infty}$ and $L_x(0) = x$. Moreover if f(x) = 0, we can define the order of zero at x, ord (f, x), by the usual order of zero of $f \circ L_x$ at z = 0. When f = 0 on P(x), we put ord $(f, x) = \infty$.

For a Douglas algebra B, we denote by B_b the set of f in L^{∞} such that if $f_n \to 0$ weakly in B, then $||ff_n + B|| \to 0$. Cima and Timoney [5] studied B_b in a general setting. By their results, B_b is a Douglas algebra and $B \subset B_b$. They called B_b the Bourgain algebra of B. Douglas algebras B satisfying $B \neq B_b$ are characterized in [7]. In this paper, we prove the following theorem.

Theorem. Let B be a Douglas algebra. Then B admits a codimension 1 linear isometry T if and only if $B_b \neq B$. In this case T has the following form: $Tf = (ub)(f \circ \varphi), f \in B$, where u is an invertible unimodular function in B, b is an interpolating Blaschke product, and φ is a homeomorphism of $M(L^{\infty})$ satisfying the following conditions.

(i)
$$B \circ \varphi = B$$
.
(ii) $\{y \in M(B); |b(y)| < 1\} = P(x_0) \text{ for some } x_0 \in M(B)$.

2. Proof of the theorem

First of all, we show a counterexample for Araujo and Font's conjecture. A Blaschke product b with zeros $\{z_n\}_n$ is called sparse (or thin) if

$$\lim_{n \to \infty} \prod_{j: j \neq n} \left| \frac{z_j - z_n}{1 - \overline{z}_n z_j} \right| = 1.$$

Let $x_0 \in Z_{H^{\infty}+C}(b)$ and $B = H^{\infty}_{\operatorname{supp} \mu_{x_0}}$. Then $\{y \in M(B); |b(y)| < 1\} = P(x_0)$ and $bB = \{g \in B; g(x_0) = 0\}$ (see [9]). Hence $Tf = bf, f \in B$, is a codimension 1 linear isometry on B.

2070

To prove our theorem, we need two lemmas.

Lemma 1. Let A and B be Douglas algebras with $B \subsetneq A$. Then $M(B) \setminus M(A)$ is not a closed subset of M(B).

Proof. Since $B \subsetneq A$, by Chang and Marshall's theorem $M(A) \subset M(B)$ and $M(B) \setminus M(A) \neq \emptyset$. To prove our assertion, suppose not. Then $M(B) \setminus M(A)$ is an openclosed subset of M(B). Hence by Shilov's idempotent theorem, there is $\chi \in B$ such that $\chi = 1$ on $M(B) \setminus M(A)$ and $\chi = 0$ on M(A). Since $M(L^{\infty}) \subset M(A)$, $\chi = 0$ on $M(L^{\infty})$. Thus we get $\chi = 0$ on M(B) and $M(B) \setminus M(A) = \emptyset$. This is a contradiction.

Lemma 2. Let A and B be Douglas algebras with $B \subsetneq A$. Then

$$M(A) \cap \overline{M(B) \setminus M(A)}$$

contains uncountably many distinct points.

Proof. By Chang and Marshall's theorem, there is an interpolating Blaschke product q such that

(2.1)
$$\overline{q} \in A \text{ and } \overline{q} \notin B.$$

Then

(2.2)
$$\emptyset \neq \{y \in M(B); |q(y)| < 1\} \subset M(B) \setminus M(A).$$

We have

(2.3)
$$q(M(B)) = D \cup \partial D.$$

For, if $\zeta \in D$, then $q_{\zeta} = (q - \zeta)/(1 - \overline{\zeta}q)$ is an inner function and q_{ζ} is not invertible in *B*. Hence there is $x \in M(B)$ such that $q_{\zeta}(x) = 0$. Thus we get $\zeta \in q(M(B))$. Let

(2.4)
$$\Gamma = \overline{\{y \in M(B); |q(y)| < 1\}} \setminus \{y \in M(B); |q(y)| < 1\}.$$

Then by (2.3), we have $q(\Gamma) = \partial D$. For each $\xi \in \partial D$, take $x_{\xi} \in \Gamma$ such that $q(x_{\xi}) = \xi$. Then $q = \xi$ on supp $\mu_{x_{\xi}}$ and

(2.5)
$$\operatorname{supp} \mu_{x_{\xi}} \cap \operatorname{supp} \mu_{x_{\eta}} = \emptyset \quad \text{if } \xi, \eta \in \partial D \text{ and } \xi \neq \eta.$$

We shall prove that for each $\xi \in \partial D$ there exists $y_{\xi} \in M(B)$ such that

(2.6)
$$\operatorname{supp} \mu_{y_{\xi}} \subset \operatorname{supp} \mu_{x_{\xi}} \quad \text{and} \quad y_{\xi} \in M(A) \cap M(B) \setminus M(A)$$

Then by (2.5), points in $\{y_{\xi}; \xi \in \partial D\}$ are distinct and we get our assertion.

We shall show the existence of y_{ξ} satisfying (2.6). If $x_{\xi} \in M(A)$, by (2.1) we have $|q(x_{\xi})| = 1$. Since $x_{\xi} \in \Gamma$, by (2.4) we have $x_{\xi} \in \overline{\{y \in M(B); |q(y)| < 1\}}$. Hence by (2.2), $x_{\xi} \in \overline{M(B) \setminus M(A)}$. Thus $x_{\xi} \in M(A) \cap \overline{M(B) \setminus M(A)}$. Put $y_{\xi} = x_{\xi}$; then (2.6) holds.

Next, suppose that $x_{\xi} \notin M(A)$. Put $A_1 = A_{\sup p \, \mu_{x_{\xi}}}$ and $B_1 = B_{\sup p \, \mu_{x_{\xi}}}$. Then $B_1 \subset A_1$. Since $x_{\xi} \in M(B)$, $B_1 = (H^{\infty})_{\sup p \, \mu_{x_{\xi}}}$. Since $x_{\xi} \notin M(B)$, $A_1 \neq (H^{\infty})_{\sup p \, \mu_{x_{\xi}}}$. Hence we have $B_1 \neq A_1$. By Lemma 1, there exists a point y_{ξ} such that

(2.7)
$$y_{\xi} \in M(A_1) \cap \overline{M(B_1) \setminus M(A_1)}.$$

KEIJI IZUCHI

We have

 $M(B_1) = M(L^{\infty}) \cup \{ y \in M(B); \operatorname{supp} \mu_y \subset \operatorname{supp} \mu_{x_{\xi}} \},\$ $M(A_1) = M(L^{\infty}) \cup \{ y \in M(A); \operatorname{supp} \mu_y \subset \operatorname{supp} \mu_{x_{\xi}} \}.$

By the above

(2.8) $M(B_1) \setminus M(A_1) = \{ y \in M(B) \setminus M(A); \operatorname{supp} \mu_y \subset \operatorname{supp} \mu_{x_{\varepsilon}} \}.$

Hence by (2.7), we have $\operatorname{supp} \mu_{y_{\xi}} \subset \operatorname{supp} \mu_{x_{\xi}}$. Since $M(A_1) \subset M(A)$ and by (2.7) and (2.8), we have $y_{\xi} \in M(A) \cap \overline{M(B)} \setminus M(A)$.

Proof of the theorem. Suppose that $B_b \neq B$. By Chang and Marshall's theorem, there is an interpolating Blaschke product ψ such that $\overline{\psi} \in B_b$ and $\overline{\psi} \notin B$. By [7, Theorem 2], $Z_B(\psi)$ is a finite set. Let $Z_B(\psi) = \{x_1, x_2, \ldots, x_n\}$ such that $x_i \neq x_j, i \neq j$. Take an open subset V of $M(H^{\infty})$ such that $x_1 \in V$ and $x_j \notin \overline{V}$ for $j = 2, 3, \ldots, n$. Let $\{z_n\}_n$ be the zeros of ψ in D. Let ψ_1 be the subproduct of ψ whose zeros are $\{z_n\}_n \cap V$. By [10, p. 205], $Z_{H^{\infty}}(\psi) = \{z_n\}_n$, so that we have $Z_B(\psi_1) = \{x_1\}$. Let $Tf = \psi_1 f$ for $f \in B$. Then T is a linear isometry on B and $TB \subset \{g \in B; g(x_1) = 0\}$. By [3, 9], for $g \in B$ with $g(x_1) = 0$ there exists $h \in B$ such that $g = \psi_1 h$. Hence $TB = \{g \in B; g(x_1) = 0\}$, so that T is a codimension 1 linear isometry on B.

Suppose that B admits a codimension 1 linear isometry T. Then by the work of Araujo and Font [1], there exist a homeomorphism φ of $M(L^{\infty})$ and a unimodular function ψ on $M(L^{\infty})$ such that

(2.9)
$$(Tf)(x) = \psi(x)f(\varphi(x))$$
 for all $x \in M(L^{\infty})$ and $f \in B$.

Since $1 \in B$, we have

 $(2.10) \qquad \qquad \psi \in B.$

First, we prove that

 $(2.11) B \circ \varphi \subset B.$

To prove this, suppose not. Let A be the Douglas algebra generated by B and $B \circ \varphi$. Then $B \subsetneq A$. By (2.9) and (2.10), we have $\psi A \subset B$. Hence by [15, Theorem 1],

(2.12)
$$M(B) \setminus M(A) \subset Z_B(\psi).$$

By Lemma 2, $M(A) \cap \overline{(M(B) \setminus M(A))}$ is an uncountable set. Let $y \in M(A) \cap \overline{(M(B) \setminus M(A))}$ and $f \in B$. Since $\psi, f \circ \varphi \in A$ and $y \in M(A)$, we have $(Tf)(y) = (\psi f \circ \varphi)(y) = \psi(y)(f \circ \varphi)(y)$. Since $y \in \overline{M(B) \setminus M(A)}$, by (2.12) $\psi(y) = 0$. Hence (Tf)(y) = 0, so that

$$M(A) \cap (M(B) \setminus M(A)) \subset Z_A(Tf) \subset Z_B(Tf)$$
 for every $f \in B$.

By [1, Proposition 3.1], $\bigcap \{Z_B(Tf); f \in B\}$ is a finite set. Hence by the above, $M(A) \cap \overline{(M(B) \setminus M(A))}$ is a finite set. This is a contradiction. Thus we obtain (2.11).

Next, we prove that

$$(2.13) \qquad \qquad \psi \notin B.$$

To prove this, suppose not. Then $\overline{\psi} \in B$ and ψ is invertible in B. Put $T_0 f = \overline{\psi}Tf$ for $f \in B$. Then T_0 is a codimension 1 linear isometry on B. By (2.9), $T_0B = B \circ \varphi$

2072

and there exists $\lambda \in B$ such that $B = B \circ \varphi + \mathbf{C}\lambda$ and $\lambda \notin B \circ \varphi$, where **C** is the set of complex numbers. Then we have

$$B \circ \varphi^{-1} = B + \mathbf{C}\lambda \circ \varphi^{-1}$$
 and $\lambda \circ \varphi^{-1} \notin B$.

Since φ is a homeomorphism of $M(L^{\infty})$, $B \circ \varphi^{-1}$ is a closed subalgebra of L^{∞} and $H^{\infty} \subset B$. Then by the above, $B \circ \varphi^{-1}$ is a Douglas algebra which contains B properly. And B is a linear subspace of $B \circ \varphi^{-1}$ of codimension 1. By Chang and Marshall's theorem, there exists an interpolating Blaschke product b such that $\overline{b} \in B \circ \varphi^{-1}$ and $\overline{b} \notin B$. Since $\overline{b}^n \in B \circ \varphi^{-1} \setminus B$ and $\{\overline{b}^n; n = 1, 2, ...\}$ is linearly independent, B is not a linear subspace of $B \circ \varphi^{-1}$ of codimension 1. This is a contradiction. Thus we get (2.13).

By (2.13), there exists $x_0 \in M(B)$ such that $\psi(x_0) = 0$. By (2.9), (2.10), and (2.11), Tf = 0 on $Z_B(\psi)$ for every $f \in B$. Then we have

(2.14)
$$Z_B(\psi) = \{x_0\}$$

For, if $y \in Z_B(\psi)$ and $y \neq x_0$, there exist $f, g \in B$ such that f(y) = 1, $f(x_0) = 0$, and g(y) = 0, $g(x_0) = 1$. Then $f, g \notin TB$ and f, g are linear independent. Hence T is not a codimension 1 linear isometry.

Also we have

(2.15)
$$TB = \{ f \in B; f(x_0) = 0 \}$$

since $TB \subset \{f \in B; f(x_0) = 0\}$ and TB is a linear subspace of B of codimension 1. Then we have

$$\psi B \subset \{f \in B; f(x_0) = 0\}$$
 by (2.14)
$$= \psi B \circ \varphi$$
 by (2.9) and (2.15)
$$\subset \psi B$$
 by (2.11).

Thus we get

$$(2.16) B = B \circ \varphi$$

(2.17)
$$\psi B = \{ f \in B; f(x_0) = 0 \}$$

We prove that $B \neq B_b$. By (2.13), it is sufficient to prove $\overline{\psi} \in B_b$. To show this, let $\{f_n\}_n \subset B$ such that $f_n \to 0$ weakly in B. Then $f_n(x_0) \to 0$. By (2.17), $f_n - f_n(x_0) \in \psi B$. Then there exists $g_n \in B$ such that $f_n - f_n(x_0) = \psi g_n$. Hence we have $||f_n\overline{\psi} - B|| \leq ||f_n\overline{\psi} - g_n|| \leq |f_n(x_0)| \to 0$ as $n \to \infty$. Therefore $\overline{\psi} \in B_b$.

Now we complete the proof. Condition (i) follows from (2.16). Since $x_0 \in M(B)$, $B_{|\operatorname{supp}\mu_{x_0}} = (H^{\infty})_{|\operatorname{supp}\mu_{x_0}}$. By (2.10), there exists $h \in H^{\infty}$ such that $h_{|\operatorname{supp}\mu_{x_0}} = \psi_{|\operatorname{supp}\mu_{x_0}}$. If $\operatorname{ord}(h, x_0) \geq 2$, there is a factorization $h = h_1h_2$ such that $h_1(x_0) = h_2(x_0) = 0$ and $h_1, h_2 \in H^{\infty}$ (see [11, Section 5]). Since $h_i \in B$, by (2.17) we have $h_i = \psi g_i$ for some $g_i \in B$ for i = 1, 2. Then $h = \psi^2 g_1 g_2$. Hence $\psi_{|\operatorname{supp}\mu_{x_0}} = (\psi^2 g_1 g_2)_{|\operatorname{supp}\mu_{x_0}}$. Since $|\psi| = 1$ on $M(L^{\infty})$, $1 = (\psi g_1 g_2)_{|\operatorname{supp}\mu_{x_0}}$. Since $(\psi g_1 g_2)(x_0) = 0$, we have a contradiction. Hence $\operatorname{ord}(h, x_0) = 1$ and x_0 is a non-trivial point. Therefore by (2.14) and [12, Corollary 4.5], there are an interpolating Blaschke product b and an invertible unimodular function u in B such that $\psi = ub$ and $Z_B(b) = \{x_0\}$. Then by [8, Theorem 3.2], $\{y \in M(B); |b(y)| < 1\} = P(x_0)$. This completes the proof.

KEIJI IZUCHI

References

- J. Araujo and J. J. Font, Codimension 1 linear isometries on function algebras, Proc. Amer. Math. Soc. 127(1999), 2273-2281. MR 99j:46059
- J. Araujo and J. J. Font, Linear isometries between subspaces of continuous functions, Trans. Amer. Math. Soc. 349(1997), 413-428. MR 97d:46026
- S. Axler and P. Gorkin, Division in Douglas algebras, Michigan Math. J. 31(1984), 89-94. MR 85h:46075
- S.-Y. Chang, A characterization of Douglas algebras, Acta Math. 137(1976), 81-89. MR 55:1074a
- J. Cima and R. Timoney, The Dunford Pettis property for certain planner uniform algebras, Michigan Math. J. 34(1987), 99-104. MR 88e:46023
- [6] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. MR 83g:30037
- P. Gorkin, K. Izuchi, and R. Mortini, Bourgain algebras of Douglas algebras, Canad. J. Math. 44(1992), 797-804. MR 94c:46104
- [8] P. Gorkin, H. -M. Lingenberg, and R. Mortini, Homeomorphic disks in the spectrum of H[∞], Indiana Univ. Math. J. **39**(1990), 961-983. MR **92b**:46082
- C. Guillory, K. Izuchi and D. Sarason, Interpolating Blaschke products and division in Douglas algebras, Proc. Roy. Irish Acad. Sect. A 84(1984), 1-7. MR 86j:46054
- [10] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, N.J., 1962. MR 24:A2844
- [11] K. Hoffman, Bounded analytic functions and Gleason parts, Michigan Math. J. 40(1993), 53-75.
- [12] K. Izuchi, Interpolating Blaschke products and factorization theorems, J. London Math. Soc. (2) 50(1994), 547-567. MR 95k:46086
- [13] D. Marshall, Subalgebras of L^{∞} containing H^{∞} , Acta Math. 137(1976), 91-98. MR 55:10746
- [14] D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79(1973), 286-299. MR 48:2777
- [15] R. Younis, Division in Douglas algebras and some applications, Arch. Math. 45(1985), 555-560. MR 87b:46059

DEPARTMENT OF MATHEMATICS, NIIGATA UNIVERSITY, NIIGATA 950-2181, JAPAN *E-mail address*: izuchi@math.sc.niigata-u.ac.jp