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SIMILARITY TO A CONTRACTION
AND HYPERCONTRACTIVITY

OF COMPOSITION OPERATORS

NIZAR JAOUA

(Communicated by David R. Larson)

Abstract. On the Hardy spaces Hp with 1 ≤ p <∞, we consider the compo-
sition operators induced by analytic self-maps of the open unit disc D. First,
we characterize those which are similar to contractions. Then, we give some
necessary and sufficient conditions for them to be hypercontractive. Finally,
we prove that, among those ones, only the zero-symbol composition operator
sends Hp into H∞ with a norm less than or equal to 1.

1. Introduction

Throughout this paper, we denote by D the open unit disc in the complex plane,
by H(D) the space of holomorphic functions on D and by H(D,D) the subset of
H(D) consisting of all self-maps of D. We also denote by N∗ the set of integers
larger than one : N∗ = {1, 2, · · · }.

Let ϕ be in H(D,D). On appropriate subspaces of H(D), the composition
operator induced by the symbol ϕ is defined by Cϕf := f ◦ ϕ. We recall that the
Hardy space Hp (0 < p < ∞) is the subspace of H(D) consisting of all functions
satisfying

‖f‖p :=
(

sup
0≤r<1

1
2π

∫ 2π

0

|f(reiθ)|p dθ
) 1
p

<∞.

For p ≥ 1, this gives a norm for which Hp is a Banach space. We also recall that
the space H∞, endowed with the norm ‖f‖∞ := sup

z∈D
|f(z)|, is a Banach space too.

From these definitions, we get the following proper inclusions:

H∞ ⊂ Hβp ⊂ Hp (0 < p <∞ , 1 < β <∞).

It is well known that Cϕ is continuous on Hp (0 < p < ∞) (see [10] and [14])
and that, for p ≥ 1, Cϕ is a contraction (i.e. ‖Cϕ‖ ≤ 1) if and only if ϕ(0) = 0 (see
Theorem 2.1).

Here, we will characterize a subclass of composition operators that contains each
Cϕ which is similar to a contraction. In Section 3, we show that the existence of a
fixed point in D, for the symbol ϕ, is a necessary and sufficient condition for Cϕ to
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be in that class. In particular, we observe that if Cϕ is polynomially bounded, then
it is similar to a contraction. G. Pisier has shown that this is not true for every
operator on a Hilbert space (see [13] for details). In the case where the contraction
is isometric and the symbol is analytic on a neighborhood of D, we give a more
precise characterization.

In Section 4, we study the class of all Cϕ’s sending Hp into Hβp (β > 1) with a
norm less than or equal to 1. The qualitative aspect of this problem (i.e. sending
Hp into Hβp) has been solved by H. Hunziker and H. Jarchow ([7]). For the
quantitative aspect (i.e. sending Hp into Hβp with norm ≤ 1), we give some
necessary and sufficient conditions. Cϕ’s satisfying the second aspect are said to
be hypercontractive or also β-contractive. At the end of Section 4, we show that,
among those ones, only the zero-symbol composition operator is a contraction from
Hp into H∞.

Section 2 is devoted to some results focused on the symbols ϕ and on the oper-
ators Cϕ sending Hp into Hβp (1 ≤ β, p <∞).

2. Preliminaries

It is well known (cf. [5]) that, for each f ∈ Hp, f∗(eiθ) := lim
r→1

f(reiθ) exists

almost everywhere on the unit circle ∂D. A function ϕ in H(D,D) is said to be
inner if |ϕ∗| = 1 almost everywhere.

Theorem 2.1 (cf. [2], p. 123). For all ϕ ∈ H(D,D) and p ∈ [1,+∞[, Cϕ is
bounded on Hp and we have

sup
|z|<1

(
1− |z|2

1− |ϕ(z)|2

) 1
p

≤ ‖Cϕ‖ ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

) 1
p

.

Moreover, Cϕ is an isometry if and only if ϕ is inner and vanishes at 0.

LetX be a Banach space. We recall that T : X → X is an isometry if ‖Tx‖ = ‖x‖
for all x ∈ X . The following well-known proposition (see [1], p. 213) describes the
spectrum σ(T ) of such an operator. For sake of completeness, we give an elementary
proof.

Proposition 2.2. If T : X → X is an isometry , then either σ(T ) ⊆ ∂D or
σ(T ) = D.

Proof. If T is onto, σ(T ) ⊆ ∂D; otherwise E := σ(T ) ∩D is a closed subset of D
containing 0. Let F = D−E = σ(T )c∩D be the complement of E in D. If λ ∈ D,
λn ∈ F and λn → λ, then for all x ∈ X , we have

‖(T − λnI)x‖ ≥ ‖Tx‖ − |λn|‖x‖ = (1− |λn|)‖x‖ ≥
1− |λ|

2
‖x‖ = δ‖x‖

for large n, which implies that ‖T −λnI)−1‖ ≤ δ−1. And this implies (cf. [4]) that
λ ∈ σ(T )c. Therefore, F is equally closed in D. The connectedness of D implies
that E = D, and σ(T ) = D.

Remark. Proposition 2.2 can be seen as a consequence of the fact that ∂σ(T ) is
contained in σap(T ) (Proposition 6.7 in [1]). This fact implies that, for any λ ∈
∂σ(T ), there is a sequence (xn)n with ‖xn‖ = 1 such that ‖(T − λI)xn‖ → 0.
Since T is an isometry, it is easy to see that |λ| = 1, and the result follows by
connectedness of D.
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The following proposition can be proved by using the factorization theorem of
F. Riesz ([5], p. 20). It justifies the reason for which one can study hypercontrac-
tivity only on the Hilbert space H2. If it sends Hp into Hβp, for some 1 < β <∞,
Cϕ is said to be β-bounded, and we denote its norm by ‖Cϕ‖p,βp.

Proposition 2.3. If Cϕ is hypercontractive on Hp for some 1 ≤ p <∞, then the
same is true for all 1 ≤ p <∞.

In the next theorem, (ϕn)n∈N denotes the iterate sequence of the map ϕ. The
uniform convergence on every compact set of D is denoted by u.c→.

Theorem 2.4 (cf. [3] or [16]). If ϕ ∈ H(D,D) has no fixed point in D, then there
exists a unique point ζ ∈ ∂D (called the Denjoy-Wolff point of ϕ) such that ϕn

u.c→ ζ.

3. Similarity to a contraction

Let X be a Banach space. T : X → X is said to be polynomially bounded if
there exists M > 0 such that ‖P (T )‖ ≤ M‖P‖∞ for every polynomial P , where
‖P‖∞ = sup{|P (z)|; |z| ≤ 1}.

Theorem 3.1. In the following assertions, (1), (3) and (4) are equivalent for all
1 ≤ p <∞. In particular, for p = 2, they are equivalent to (2).

(1) Cϕ is similar to a contraction.
(2) Cϕ is polynomially bounded.
(3) Cϕ is power bounded.
(4) ϕ has a fixed point in D.

Proof. (1) =⇒ (2) By hypothesis, there exists an invertible operator S on H2 such
that

Cϕ = S−1CS where C is a contraction on H2.

P (Cϕ) = S−1P (C)S.

‖P (Cϕ)‖ ≤ ‖S−1‖‖P (C)‖‖S‖ ≤ ‖S−1‖‖S‖‖P‖∞.

The last estimate follows from the famous von Neumann’s inequality.
(2)=⇒(3) This is immediate.
(3)=⇒(4) Assume that ϕ has no fixed point in D. By the weak form of the

Denjoy-Wolff theorem, we have |ϕn| u.c→ 1. Since

‖Cnϕ‖ = ‖Cϕn‖ ≥ (1− |ϕn(0)|2)−
1
p ,

we conclude that

lim
n→∞

‖Cnϕ‖ =∞.

This is in contradiction with (3).
(4)=⇒(1) Let a ∈ D be a fixed point of ϕ. Set

ψ = ϕa ◦ ϕ ◦ ϕa where ϕa(z) =
a− z
1− āz .

ϕa is a holomorphic automorphism of D and ϕ−1
a = ϕa. Since ψ ∈ H(D,D)

and ψ(0) = 0, by Theorem 2.1, Cψ is a contraction on Hp. Now, the identity
ϕ = ϕa ◦ ψ ◦ ϕ−1

a implies that Cϕ = C−1
ϕa CψCϕa , and this completes the proof.
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E. Nordgren ([10]) has shown that if Cnϕ is compact for some n ∈ N∗, then ϕ has
a fixed point in D. As a consequence of this result and Theorem 3.1, we have the
following.

Corollary 3.2. If Cnϕ is compact for some n ∈ N∗, then Cϕ is similar to a con-
traction.

In order to study the similarity with an isometry on Hp, we need the following
theorem (cf. [9]) which provides the spectrum of Cϕ in a special case.

Theorem 3.3. Suppose ϕ is analytic on a neighborhood of D, not inner and with
a fixed point a in D. If Cnϕ is compact on Hp (1 ≤ p < ∞) for no n ∈ N∗, then
there exists 0 < ρ < 1 such that

σ(Cϕ) = {λ ∈ C; |λ| ≤ ρ} ∪ {(ϕ′(a))n;n ∈ N∗} ∪ {1}.

Theorem 3.4. Suppose ϕ is analytic on a neighbourhood of D. Then the following
are equivalent:

(1) Cϕ is similar to an isometry.
(2) ϕ is inner and has a fixed point in D.

Proof of Theorem 3.4. (1)=⇒(2) By Theorem 3.1, ϕ has necessarily a fixed point
in D. Now, assume that ϕ is not inner. Since Cnϕ is compact for no n ∈ N∗ (an
operator which is similar to an isometry cannot be compact in infinite dimension),
by Theorem 3.3, σ(Cϕ) 6= D and σ(Cϕ) 6⊆ ∂D. This deduction together with
Theorem 2.2 leads to a contradiction with (1). Consequently, ϕ is necessarily inner.

(2)=⇒(1) This can be proved in the same way as (4)=⇒(1) of Theorem 3.1.
Note that, here, Cψ is an isometry since ψ is inner and vanishes at 0 (see Theorem
2.1).

Question. Theorem 3.3 provides the spectrum of Cϕ with ϕ analytic on a neigh-
borhood of D. Is this condition on ϕ necessary in Theorem 3.4 ?

The next corollary follows immediately from Theorem 3.4 and a known result
saying that Cϕ is invertible on Hp if and only if ϕ is an automorphism of D (see
[11] or [2] or more recently [6]).

Corollary 3.5. A composition operator is similar to an isometric isomorphism on
Hp if and only if its symbol is an elliptic automorphism of D.

4. Hypercontractivity

F. B. Weissler ([15]) has characterized the hypercontractivity of convolution op-
erators by Poisson kernels Pr(θ) := 1−r2

1+r2−2r cos θ (0 < r < 1). Those operators are
defined on Lp(∂D,m) by : ([Pr]f)(eiθ) =

∑+∞
−∞ f̂(n)r|n|einθ. He has shown that

‖[Pr]‖Lp→Lq = 1 (resp., ‖[Pr]‖Hp→Hq = 1) if and only if r2 ≤ p−1
q−1 (resp., r2 ≤ p

q )
for all p, q such that 1 < p < q <∞.

This result and the following lemma will allow us to characterize the hypercon-
tractive Cαz with |α| ≤ 1. Note that the symbols ϕ(z) = αz are exactly those for
which Cϕ : H2 → H2 is normal (see [11]).

Lemma 4.1. Let f ∈ H∞ with f(0) = 0 and q ∈]0,+∞[. For all ε > 0 small
enough, we have

‖1 + εf‖q = 1 +
q

4
‖f‖22ε2 + o(ε2).
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Proof. For all z ∈ D, one has

(1 + εf(z))
q
2 = 1 + ε

q

2
f(z) + ε2 q

4
(
q

2
− 1)f2(z) + o(ε2).

Here, o(ε2) does not depend on z since f is bounded. So, we obtain

|1 + εf(z)|q = |(1 + εf(z))
q
2 |2 = (1 + εf(z))

q
2 (1 + εf(z))

q
2

= 1 + εqRe(f(z)) + ε2 q
2 ( q2 − 1)Re(f2(z)) + ε2 q

2

4 |f(z)|2 + o(ε2).

As Re(f) and Re(f2) are harmonic in D and since f(0) = 0, by integration on
[0, 2π] with respect to the measure dθ

2π , one gets

1
2π

∫ 2π

0

|1 + εf(eiθ)|q dθ = 1 + ε2 q
2

4
‖f‖22 + o(ε2).

This leads to the desired assertion.

Theorem 4.2. Let α ∈ D and 1 < β < ∞. We have equivalence between (1) and
(2) and between (3) and (4).

(1) Cαz is β-bounded.
(2) |α| < 1.
(3) Cαz is β-contractive.
(4) |α| ≤ β− 1

2 .

Proof. (1) =⇒ (2) Suppose that |α| = 1. That means ϕ is a rotation of D, and
then Cϕ sends H2 onto itself: this is a contradiction with (1).

(2)=⇒(1) Since ‖ϕ‖∞ = |α| < 1, one has

Cϕ(H2) ⊂ H∞ ⊂ H2β.

Thus, Cϕ is β-bounded.
(3)=⇒(4) Let g be the function defined on D by g(z) = 1 + εz with ε > 0 small

enough. Since Cαzg = 1 + εf where f(z) = αz for all z ∈ D, by Lemma 4.1 applied
to this f and to q = 2β, we get

‖Cϕg‖2β = 1 +
β|α|2

2
ε2 + o(ε2).

On the other hand, this same lemma, applied to f ≡ z and q = 2, gives

‖g‖2 = 1 +
1
2
ε2 + o(ε2).

Now, by hypothesis, we have ‖Cϕg‖2β ≤ ‖g‖2. Let us simplify, then take the limit
as ε→ 0 to obtain |α|2 ≤ 1

β . This implies (4).
(4)=⇒(3) This is nothing else but another formulation of Weissler’s theorem

mentioned at the beginning of this section. Indeed, just observe that ‖Cαz‖2,2β =
‖[Pr]‖H2→H2β with r = |α|.

Corollary 4.3. If ϕ(0) = 0 and ‖ϕ‖∞ ≤ β−
1
2 , then Cϕ is β-contractive.

Proof. Set r = ‖ϕ‖∞ and ψ = 1
rϕ. By Schwarz’ lemma, one has |ϕ(z)| ≤ r|z|.

Thus, ψ ∈ H(D,D). On the other hand, the identities Cϕ = Crψ = CψCrz imply
that

‖Cϕ‖1,β ≤ ‖Cψ‖β,β‖Crz‖1,β ≤ 1.

The last estimate comes from the fact that ψ(0) = 0 and from Theorem 4.2 which
one can apply because r ≤ β− 1

2 .
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In the following theorem, we denote by H2
0 the subspace of H2 consisting of all

functions vanishing at 0.

Theorem 4.4. If Cϕ is β-contractive, then we have the following:

(1) ‖Cϕ‖B(H2
0 ) ≤ β−

1
2 .

(2) 1
2π

∫ 2π

0 |g(ϕ(eiθ))|2|ϕ(eiθ)|2 dθ ≤ 1
β ‖g‖22 for all g ∈ H2. In particular,

‖ϕ‖2 ≤ β−
1
2 .

Proof. (1) First, let us suppose that f ∈ H∞ with f(0) = 0. Since the contractivity
of Cϕ implies that ϕ(0) = 0, we get f ◦ ϕ ∈ H∞ and (f ◦ ϕ)(0) = 0. Let ε > 0 be
small enough. By Lemma 4.1, we obtain{

‖1 + εf ◦ ϕ‖2β = 1 + β
2 ‖f ◦ ϕ‖22ε2 + o(ε2),

‖1 + εf‖2 = 1 + 1
2‖f‖22ε2 + o(ε2).

Now, by hypothesis, one has

‖1 + εf ◦ ϕ‖2β ≤ ‖1 + εf‖2.

Thus, after simplifying and taking the limit as ε→ 0, one concludes that β‖f◦ϕ‖22 ≤
‖f‖22. Hence, ‖f ◦ ϕ‖2 ≤ β−

1
2 ‖f‖2.

Let us suppose now that f ∈ H2
0 . If we denote by (fn)n the partial sums of f , that

is, fn(z) =
n∑
k=1

f̂(k)zk, we have ‖fn−f‖2 → 0. The inequality ‖fn◦ϕ‖22 ≤ β−1‖fn‖22

follows from the previous part of the proof (since fn ∈ H∞0 ), and the desired result
is obtained by passing to the limit in this inequality (since Cϕ is bounded on H2).

(2) This follows from (1) by using the fact that zg ∈ H2
0 for all g ∈ H2.

Remark. So far, we have not been able to discover whether the condition ‖ϕ‖∞ < 1
is necessary for Cϕ to β-contractive. However, one can show that this is true in the
case where ϕ(0) = 0 and |ϕ(u) − ϕ(v)| ≤ k|u − v|

1
β on (∂D)2 with 0 < k < 2

1
β−1

(see [8]).

H. Hunziker and H. Jarchow ([7]) have characterized β-boundedness of Cϕ’s for
all 1 ≤ β <∞. The following theorem gives a version for the limit case β =∞.

Theorem 4.5. The following are equivalent:

(1) ‖ϕ‖∞ < 1.
(2) Cϕ(Hp) ⊂ H∞ for all 1 ≤ p <∞.
(3) Cϕ(Hp) ⊂ H∞ for some 1 ≤ p <∞.

Proof. (1) =⇒ (2) It is well known (cf. [17]) that the point evaluation operator δz,
defined by δz(f) = f(z), is bounded on Hp and ‖δz‖ = (1−|z|2)−

1
p . For all f ∈ Hp

and z ∈ D, we have

|f(ϕ(z))| ≤ ‖δϕ(z)‖(Hp)∗‖f‖p = (1− |ϕ(z)|2)−
1
p ‖f‖p ≤ (1− ‖ϕ‖2∞)−

1
p ‖f‖p.

Thus, f ◦ ϕ ∈ H∞ and ‖f ◦ ϕ‖∞ ≤ (1 − ‖ϕ‖2∞)−
1
p ‖f‖p.

(2)=⇒(3) This is immediate.
(3)=⇒(1) For every ζ ∈ ∂D, the function z 7−→ (ζ − z)−

1
2p belongs to Hp. So

by hypothesis, there exists c > 1 such that |ζ−ϕ(z)|−
1
2p ≤ c. In other words, there



HYPERCONTRACTIVITY OF COMPOSITION OPERATORS 2091

exists δ ∈]0, 1[ such that

|ζ − ϕ(z)| ≥ δ for all z ∈ D.(∗)

Let z be in D such that ϕ(z) 6= 0. By (∗), applied to ζ = ϕ(z)
|ϕ(z)| , we obtain

1− |ϕ(z)| = |ϕ(z)|| 1
|ϕ(z)| − 1| = |ϕ(z)(

1
|ϕ(z)| − 1)| ≥ δ.

Thus, |ϕ(z)| ≤ 1− δ; z being arbitrary, we conclude that ‖ϕ‖∞ ≤ 1− δ < 1.

We end this paper with the following theorem which says that C0 is the only
contractive composition operator from Hp (1 ≤ p <∞) into H∞.

Theorem 4.6. The following are equivalent:
(1) Cϕ : Hp → H∞ is a contraction.
(2) ϕ ≡ 0.

Proof. (1)=⇒(2) For all z ∈ D and f ∈ Hp with ‖f‖p = 1, one has |f(ϕ(z))| ≤
‖f ◦ ϕ‖∞ ≤ 1. Thus, ‖δϕ(z)‖(Hp)∗ = (1 − |ϕ(z)|2)−

1
p ≤ 1. So, we deduce that

1− |ϕ(z)|2 = 1 for all z ∈ D, and this gives (2).
(2)=⇒(1) For all f ∈ Hp, Cϕf = f ◦ϕ ≡ f(0) ∈ H∞. Consequently, ‖Cϕf‖∞ =

|f(0)| ≤ ‖f‖p.
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