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THE RELATIVE PLURICANONICAL STABILITY
FOR 3-FOLDS OF GENERAL TYPE

MENG CHEN

(Communicated by Ron Donagi)

Abstract. The aim of this paper is to improve a theorem of János Kollár by a
different method. For a given smooth complex projective threefold X of general
type, suppose the plurigenus Pk(X) ≥ 2. Kollár proved that the (11k + 5)-
canonical map is birational. Here we show that either the (7k + 3)-canonical
map or the (7k+5)-canonical map is birational and that the (13k+6)-canonical
map is stably birational onto its image. Suppose Pk(X) ≥ 3. Then the m-
canonical map is birational for m ≥ 10k + 8. In particular, φ12 is birational
whenever pg(X) ≥ 2 and φ11 is birational whenever pg(X) ≥ 3.

Introduction

Let X be a smooth projective 3-fold of general type defined over C and denote
by φm the m-canonical map of X , which is the rational map associated with the
linear system |mKX |. Let Pk(X) := h0(X,OX(kKX)) for any positive integer k.
We usually call Pk(X) the k-th plurigenus of X which is a birational invariant. For
a given positive integer m0, we say that φm0 is stably birational if φm is birational
onto its image for all m ≥ m0. Since the Kodaira dimension kod(X) = 3, φm is
birational for m� 0. In this paper, we consider the following

Problem. Suppose Pk(X) ≥ 2. For which value m0(k), does |m0(k)KX | define a
stably birational map onto its image?

In 1986, Kollár ([5, Corollary 4.8]) first gave an effective result and proved that
the (11k+5)-canonical map is birational if Pk(X) ≥ 2. However, his method cannot
tell whether φm is still birational for all m > 11k+ 5. On the other hand, it seems
to us that the number 11k + 5 is not the optimal one. This paper aims to present
a better result as the following

Main Theorem. Let X be a nonsingular projective threefold of general type and
suppose Pk(X) ≥ 2. Then the following hold:

(i) either φ7k+3 or φ7k+5 is birational onto its image;
(ii) φ13k+6 is stably birational onto its image;
(iii) φ10k+8 is stably birational provided that Pk(X) ≥ 3.

In particular, φ12 is stably birational if pg(X) ≥ 2 and φ11 is stably birational if
pg(X) ≥ 3.
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Noting that the main obstacle which prevents Kollár’s method from getting
a better bound is the case when X admits a rational pencil of certain surfaces of
general type, we shall mainly make a special study of this situation in an alternative
way. First we build some birationality criteria for adjoint systems on a surface of
general type. Then we reduce the problem to the surface case while finding suitable
divisors on the threefold whose restrictions to the surface satisfy those criteria. The
Kawamata-Viehweg vanishing theorem plays a key role throughout our argument.

Definition. Let X be a normal projective variety and D be a Weil divisor on X .
Denote by Φ|D| the natural rational map defined by the linear system |D|. |D| is
called base point free if it has neither fixed components nor base points.

If |L| is a linear system on X without fixed components and h0(X,L) ≥ 2, we
mean a general irreducible element S of |L| as follows:

(1) If dim Φ|L|(X) ≥ 2, then S is a general member of |L|.
(2) If dim Φ|L|(X) = 1, then L is linearly equivalent to a union of distinct reduced

irreducible divisors of the same type. Explicitly, L ∼lin

∑
Si. We mean by S a

general Si.
X is called minimal if the canonical divisor KX is nef, i.e. KX · C ≥ 0 for all

proper curves C ⊂ X .
X is said to be of general type if the Kodaira dimension kod(X) = dim(X).
X is said to have only terminal singularities according to Reid ([7]) if the fol-

lowing two conditions hold:
(i) for some integer r ≥ 1, rKX is Cartier;
(ii) for some resolution f : Y −→ X , KY = f∗(KX) +

∑
aiEi for 0 < ai ∈ Q for

all i, where the Ei vary all the exceptional divisors on Y .

1. Preparation

Throughout our argument, the Kawamata-Viehweg vanishing theorem will be
always employed as a much more effective tool. We shall use it in the following
form.

Vanishing Theorem ([3] or [10]). Let X be a nonsingular complete variety, D ∈
Div(X)⊗Q. Assume the following two conditions:

(1) D is nef and big;
(2) the fractional part of D has supports with only normal crossings.

Then Hi(X,OX(pDq + KX)) = 0 for i > 0, where pDq is the round-up of D, i.e.
the minimum integral divisor with pDq−D ≥ 0.

Another important principle that is tacitly used throughout the text is due to
Tankeev ([9]). Explicitly, on a smooth projective variety X , if we have a base point
free system |M | and an effective divisor D, we want to study the birationality of
the map Φ|D+M|. Now let S be a general irreducible element of |M |. Then S is a
smooth divisor on X by Bertini’s theorem. Suppose we have known that Φ|D+M|
can distinguish general irreducible elements and that Φ|D+M|

∣∣
S

is birational. Then
Tankeev’s principle implies the birationality of Φ|D+M|.

Lemma 1.1 ([8, Corollary 2]). Let S be a nonsingular algebraic surface, L be a
nef divisor on S, L2 ≥ 10 and let φ be a map defined by |L + KS |. If φ is not
birational, then S contains a base point free pencil E′ with L ·E′ = 1 or L ·E′ = 2.
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Lemma 1.2. Let S be a nonsingular projective surface of general type and suppose
L is a divisor with h0(S,L) ≥ 2. Then h0(S,KS+L) ≥ 2. In particular, if χ(OS) ≥
3, then h0(S,KS + L) ≥ 4.

Proof. Taking a general irreducible element C in the moving part of |L|, then C is
a nef divisor, C ≤ L and C is a curve of genus ≥ 2. By R-R on the surface S, we
have

h0(S,KS + L) ≥ h0(S,KS + C) ≥ 1
2

(KS · C + C2) + χ(OS).

It is easy to get the result.

Lemma 1.3. Let S be a nonsingular projective surface of general type, L be a nef
divisor, L2 ≥ 3 and dim Φ|L|(S) = 2. Then |KS + 2L| gives a birational map.

Proof. We have (2L)2 ≥ 12. If Φ|KS+2L| is not birational, then according to Lemma
1.1, there is a base point free pencil E′ such that 2L · E′ ≤ 2, i.e. L · E′ = 1.
Since dim Φ|L|(S) = 2 and E′ is a curve of genus ≥ 2, we see that L · E′ ≥ 2, a
contradiction.

Lemma 1.4. Let S be a nonsingular projective surface of general type, Li be a
divisor on S such that dim Φ|Li|(S) ≥ i for i = 1, 2. Then |KS + 2L2 + L1| gives
a birational map.

Proof. Modulo blowing-ups, we can suppose that the |Li| is base point free for
i = 1, 2. This means that L2 is nef and big and that L1 is nef.

If the system |L2| gives a birational map, then so does |KS + 2L2 +L1|, because
KS + L1 is effective by Lemma 1.2.

Otherwise, we have L2
2 ≥ 2. Now we have (2L2 + L1)2 ≥ 12. If |KS + 2L2 + L1|

does not give a birational map, then, by Lemma 1.1, there is a free pencil E′ on S
such that

(2L2 + L1) ·E′ ≤ 2.

This means L2 · E′ = 1. Note that E′ is a curve of genus ≥ 2 and |L2| gives
a generically finite map. The Riemann-Roch theorem on the curve E′ tells that
deg(L2|E′) ≥ 2. We have derived a contradiction.

Lemma 1.5. Let X be a nonsingular projective 3-fold of general type. Suppose
that Li is a divisor on X such that dim Φ|Li|(X) ≥ i for i = 1, 2, 3. Then

|KX + 2L3 + L2 + L1|

gives a birational map.

Proof. Take a birational modification π : X ′ −→ X according to Hironaka such
that the |π∗(Li)| are all base point free for i > 0. On X ′, we can study the system
|KX′ + 2π∗(L3) + π∗(L2) + π∗(L1)|. Let Mi be the moving part of |π∗(Li)|. We
have

|KX′ + 2M3 + M2 +M1| ⊂ |KX′ + 2π∗(L3) + π∗(L2) + π∗(L1)|.

Therefore, for simplicity, we can suppose from the beginning that the |Li| are base
point free on X . So L3 is nef and big under this assumption.
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Step 1. Verifying that KX + 2L3 + L2 is effective.
We have dim Φ|L2|(X) ≥ 2. So a general member S ∈ |L2| is a nonsingular pro-

jective surface of general type. Using the vanishing theorem to the exact sequence

0 −→ OX(KX + 2L3) −→ OX(KX + 2L3 + S) −→ OS(KS + 2L3|S) −→ 0,

we get the surjective map

H0(X,KX + 2L3 + S) −→ H0(S,KS + 2L3|S) −→ 0.

From Lemma 1.2, we know KS + 2L3|S is effective, so is KX + 2L3 + L2.
Step 2. Reduction to surface case.
Taking a 1-dimensional sub-system of |L1|, then this system defines a rational

map onto P1. Taking further blowing-up if necessary, we can also suppose that
this system defines a morphism f : X −→ P1. Taking the Stein factorization of f ,
one obtains a derived fibration g : X −→ C. A general fibre of f can be written
as a disjoint union

∑
Fi. Let F be a general fibre of g; then it is a nonsingular

projective surface of general type and we have F ≤ L1. Now considering the system
|KX+2L3+L2 +

∑
Fi|, it can distinguish general fibres of g because KX+2L3 +L2

is effective and 2L3 + L2 is nef and big. Using the vanishing theorem again, we
have

|KX + 2L3 + L2 +
∑

Fi|
∣∣
F

= |KF + 2L′3 + L′2|,

where L′3 := L3|F and L′2 := L2|F . Lemma 1.4 tells that the right system gives a
birational map, so does |KX + 2L3 + L2 + L1|. The proof is completed.

Lemma 1.6. Let X be a nonsingular variety of dimension n, D ∈ Div(X)⊗Q be
a Q-divisor on X. Then we have the following:

(i) if S is a smooth irreducible divisor on X and S is not a fractional component
of D, then pDq|S ≥ pD|Sq;

(ii) if π : X ′ −→ X is a birational morphism, then π∗(pDq) ≥ pπ∗(D)q.

Proof. These are trivial.

Lemma 1.7. Let X be a nonsingular projective threefold of general type. Let D
be a divisor on X with h0(X,D) ≥ 2 and suppose |D| has no fixed components.
Denote by F a general irreducible element of |D|. If L is another divisor such that
dim Φ|L|(F ) ≥ 1, then mKX +L+D is effective and dim Φ|mKX+L+D|(F ) ≥ 1 for
all m ≥ 2.

Proof. According to the 3-dimensional MMP ([4] and [6]), X has a minimal model
X0 which is normal projective with only Q-factorial terminal singularities. Let
α : X 99K X0 be the contraction which is a rational map. Take a common resolution
X ′ with π′ : X ′ −→ X and π : X ′ −→ X0 such that π = α ◦ π′ and that

(1) both |π′∗(L)| and |π′∗(D)| have no base points (they may have fixed compo-
nents);

(2) π∗(KX0) has supports with only normal crossings.
This is possible because of Hironaka’s big theorem. Since π′∗(mKX +L+D) ≤

mKX′ + π′
∗(L) + π′

∗(D) and

π′∗OX′(mKX′ + π′
∗(L) + π′

∗(D)) = OX(mKX + L+D)

= π′∗π
′∗OX(mKX + L+D),
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then h0
(
X ′, π′

∗(mKX + L+D)
)

= h0
(
X ′,mKX′ + π′

∗(L) + π′
∗(D)

)
, so

Φ|π′∗(mKX+L+D)| and Φ|mKX′+π′∗(L)+π′∗(D)|

have the same behavior. Let S be a general irreducible element of the moving part
of |π′∗(D)|; then dim Φ|π′∗(L)|(S) ≥ 1 by assumption. Therefore it is sufficient to
show

dim Φ|mKX′+π′∗(L)+π′∗(D)|(S) ≥ 1

for m ≥ 2. Let H be the moving part of |π′∗(L)|; then H is nef since |H | is base
point free. We have

|KX′ + p(m− 1)π∗KX0q+H + S| ⊂ |mKX′ + π′
∗(L) + π′

∗(D)|.

The Kawamata-Viehweg vanishing theorem gives

|KX′ + p(m− 1)π∗KX0q+H + S|
∣∣
S

= |KS + p(m− 1)π∗KX0q|S +M | ⊃ |KS + pBq+M |,

where B := (m − 1)π∗KX0 |S is nef and big on S and M := H |S . From the
assumption, we have h0(S,M) ≥ 2. Choosing a 1-dimensional sub-system |C| in
|M |, modulo blowing-ups, we can suppose |C| to be base point free. Also from the
vanishing theorem, we have

|KS + pBq+ C|
∣∣
C

= |KC +D|,

where D := pBq|C is a divisor on the curve C with positive degree since D ≥ pB|Cq
by Lemma 1.6(i). Because g(C) ≥ 2, we have h0(KC+D) ≥ 2. This means |KC+D|
gives a generically finite map and

dim Φ|KS+pBq+C|(C) = 1;

thus KX′ + p(m− 1)π∗KX0q + π′
∗(L) + π′

∗(D) is effective and the image of S
through the map defined by this divisor is at least 1. The proof is completed.

2. Proof of the main theorem

2.1 Basic formula. Let X be a nonsingular projective threefold, f : X −→ C be
a fibration onto a nonsingular curve C. From the spectral sequence:

Ep,q2 := Hp(C,Rqf∗ωX)⇒ En := Hn(X,ωX),

we get by direct calculation that

h2(X,OX) = h1(C, f∗ωX) + h0(C,R1f∗ωX),

q(X) := h1(X,OX) = b+ h1(C,R1f∗ωX),

where b denotes the genus of C.
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2.2 Review of Kollár’s technique. Let X be a smooth projective 3-fold of
general type and suppose Pk(X) ≥ 2. Choose a 1-dimensional sub-system of |kKX |
and replace X by a birational model X ′ where this pencil defines a morphism
g : X ′ −→ P1. (For simplicity, we can suppose X ′ = X.) Let S be a general
irreducible element of this pencil. Then a general fibre of g is a disjoint union of
some surfaces with the same type as S and S is a smooth projective surface of
general type. Let t = k(2p + 1) + p. Then H0(ωtX) = H0(P1, g∗ω

t
X) and we have

an injection O(1) ↪→ g∗ω
k
X , and hence an injection O(2p + 1) ↪→ g∗ω

k(2p+1)
X . This

gives an injection

O(2p+ 1)⊗ g∗ωpX ↪→ g∗ω
t
X ,

where O(2p + 1) ⊗ g∗ωpX = O(1) ⊗ g∗ωpX/P1 . Now it is well-known that g∗ω
p
X/P1

is a sum of line bundles of non-negative degree on P1. If p ≥ 5, the local sections
of g∗ω

p
X give a birational map for S and all these extend to global sections of

O(2p + 1) ⊗ g∗ωpX . Moreover its sections separate the fibres from each other, and
hence φt is a birational map for X .

From the above method, according to [1] and [11], we have
(1) φ5k+2 is generically finite for X if S is not a surface with pg(S) = q(S) = 0

and K2
S0

= 1, where S0 is the minimal model of S. Otherwise, we have at least
dimφ5k+2(X) ≥ 2;

(2) φ7k+3 is birational for X if S is not a surface with

(K2
S0
, pg(S)) = (1, 2) or (2, 3).

2.3 Proof of the main theorem. According to the 3-dimensional MMP, we can
suppose X to be a minimal model with at worst Q-factorial terminal singularities.
This means that KX is a nef and big Q-divisor. We begin from a minimal model
in order to make use of the Kawamata-Viehweg vanishing theorem.

Theorem 2.3.1. Let X be a nonsingular projective 3-fold of general type and sup-
pose Pk(X) ≥ 2. Then either φ7k+3 or φ7k+5 is birational.

Proof. Suppose X is a minimal model with at worst Q-factorial terminal singu-
larities. Choose a 1-dimensional sub-system Λ of |kKX | and take a birational
modification π : X ′ −→ X such that

(i) X ′ is nonsingular;
(ii) π∗Λ gives a morphism;
(iii) the fractional part of π∗(KX) has supports with only normal crossings.
This is possible because of Hironaka’s big theorem. Set g1 := ΦΛ ◦ π and let

X ′
f1−→ W1

s1−→ P1 be the Stein factorization of g1. Denote b := g(W1), the
geometric genus of the curve W1.

If b > 0, then the moving part of Λ is base point free. Let
∑
Si be the moving

part of Λ; then
∑
Si ≤ kKX and a general Si is a smooth projective surface of

general type, since the singularities on X are isolated. Using Kawamata’s vanish-
ing theorem ([4]) to Q-Cartier Weil divisors on minimal threefold X , we see that
|(a+ 1)KX +

∑
Si| can distinguish general Si for a > 0 and

H0(X, (a+ 1)KX +
∑

Si) −→
⊕

H0(Si, (a+ 1)KSi)

is surjective. Therefore it is obvious that φm is effective whenever m ≥ k + 2,
generically finite whenever m ≥ 2k + 2, birational whenever m ≥ 2k + 4.
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So, from now on, we can suppose that b = 0. We have a fibration f1 : X ′ −→ P1.
Let F be a general fibre of f1. By virtue of 2.2(2), we can suppose that F is a
surface with invariants (K2

F0
, pg(F )) = (1, 2) or (2, 3), where F0 is the minimal

model of F . F is the moving part of π∗Λ and F ≤Q π∗(kKX). We automatically
have q(F ) = 0. First we study the system |KX′ + pkπ∗(KX)q + F |. For a general
fibre F , the vanishing theorem gives that

|KX′ + pkπ∗(KX)q+ F |
∣∣
F

= |KF + pkπ∗(KX)q|F
∣∣,

where pkπ∗(KX)q|F is effective. This means that (2k + 1)KX′ is effective and
dimφ2k+1(F ) ≥ 1. By Lemma 1.7, we see that mKX′ is effective and dimφm(F ) ≥
1 for m ≥ 3k + 3.

Actually, we have dimφ3k+2(F ) = 2. In fact, we have

|KX′ + p(2k + 1)π∗(KX)q+ F |
∣∣
F
⊃ |KF +M2k+1|F

∣∣,
where M2k+1 is the moving part of |p(2k + 1)π∗KXq|. It is easy to check that∣∣ KF + M2k+1|F

∣∣ gives a generically finite map because q(F ) = 0 and pg(F ) > 0.
Thus

dim Φ|KX′+p(2k+1)π∗(KX)q+F |(F ) ≥ 2.

We have |KX′+p2(3k + 2)π∗(KX)q+F | ⊂ |(7k+5)KX′ |. KX′+p2(3k + 2)π∗(KX)q
is effective by the above argument. So |KX′ + p2(3k + 2)π∗(KX)q + F | can dis-
tinguish general fibre F . On the other hand, the Kawamata-Viehweg vanishing
theorem gives

|KX′ + p2(3k + 2)π∗(KX)q+ F |
∣∣
F

=
∣∣ KF + p2(3k + 2)π∗(KX)q|F

∣∣
⊃ |KF + 2L3k+2|,

where L3k+2 := M3k+2|F . It is sufficient to show that |KF + 2L3k+2| gives a
birational map for F . We have already known that |L3k+2| gives a generically finite
map for F . Excluding the fixed components of |L3k+2|, we can suppose that |L3k+2|
are moving on the surface F . So L3k+2 is nef. If |L3k+2| gives a birational map,
then so does |KF + 2L3k+2|. Otherwise,

L2
3k+2 ≥ 2(h0(F,L3k+2)− 2).

Consider the following three natural maps:

H0(X ′,M3k+2) α−→ H0(F,L3k+2),

H0(X ′,KX′ + p(2k + 1)π∗(KX)q+ F )
β−→ H0(F,KF + p(2k + 1)π∗(KX)q|F ) −→ 0,

H0
(
X ′, (3k + 2)KX′

) γ−→ H0
(
F, (3k + 2)KF

)
where β is surjective by the Kawamata-Viehweg vanishing theorem. We see that

dimC
(
im(α)

)
= dimC

(
im(γ)

)
≥ dimC

(
im(β)

)
= h0(F,KF +D2k+1)

where D2k+1 := p(2k + 1)π∗(KX)q|F and h0(F,D2k+1) ≥ 2. So

h0(F,KF +D2k+1) ≥ 4,

according to Lemma 1.2, because we have χ(OF ) ≥ 3 in this case. Thus

L2
3k+2 ≥ 2

(
h0(F,L3k+2)− 2

)
≥ 2
(

dimC
(
im(α)

)
− 2
)
≥ 4
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and then |KF+2L3k+2| gives a birational map by Lemma 1.3. So φ7k+5 is birational.
Finally, for all m ≥ 10k + 7, set t := m− 7k − 5 ≥ 3k + 2; then dimφt(F ) ≥ 1.

In particular, tKX′ is effective. So φm is birational for all m ≥ 10k + 7 in this
case.

Corollary 2.3.1. Let X be an irregular nonsingular 3-fold of general type and
suppose Pk(X) ≥ 2. Then φ7k+3 is birational. Therefore at least φ143 is birational
according to Kollár and Fletcher.

Proof. In the proof of the last theorem, if b > 0, then φm is birational form ≥ 2k+4.
If b = 0, we can use the formula of q(X) to the fibration f1 : X ′ −→ P1. When
q(X) > 0, then we must have q(F ) > 0. Then Φ|3KF | is birational for the fibre F ,
and so is Φ|(7k+3)KX | by 2.2(2). Moreover, we have P20(X) ≥ 2 for any irregular
3-fold of general type according to Kollár ([5]) and Fletcher ([2]). Thus φ143 is
birational.

Theorem 2.3.2. Let X be a nonsingular projective threefold of general type and
suppose Pk(X) ≥ 2. Then φm is birational for m ≥ 13k + 6.

Proof. Suppose X is a minimal model with at worst Q-factorial terminal singular-
ities. Make a birational modification π : X ′ −→ X such that:

(i) X ′ is nonsingular;
(ii) |kKX′ | gives a morphism;
(iii) the fractional part of π∗(KX) has supports with only normal crossings.

Set g := Φ|kKX | ◦ π and W ′ := Φ|kKX |(X). Let X ′
f−→ W

s−→ W ′ be the Stein
factorization of g.

We would like to formulate our proof through two steps as follows.
Case 1. dimφk(X) ≥ 2.

Set kKX′ ∼lin Mk + Zk, where Mk is the moving part and Zk is the fixed part.
Then a general member S ∈ |Mk| is an irreducible nonsingular projective surface
of general type. Write KX′ = π∗(KX) +

∑
aiEi, where the Ei are exceptional

divisors for π, 0 < ai ∈ Q for each i. Obviously, pπ∗(KX)q ≤ KX′ . Because
h0(X ′, pπ∗(kKX)q) = h0(X ′, kKX′), we can see that Mk is actually also the moving
part of |pπ∗(kKX)q|. Thus we have

π∗(kKX) ≥Q Mk +
∑

biEi,

where 0 ≤ bi ∈ Q for each i.
We claim that mKX′ is always effective for m ≥ 2k+ 1. In fact, for any t ∈ Z+,

we consider the system

|KX′ + pπ∗((t+ k)KX)q+ S|.

It is a sub-system of |(2k + t + 1)KX′ |. By the Kawamata-Viehweg vanishing
theorem, we have a surjective map

H0(X ′,KX′ + pπ∗((t+ k)KX)q+ S) −→ H0(S,KS + pπ∗((t+ k)KX)q|S) −→ 0.

Noting that pπ∗((t+ k)KX)q ≥ pπ∗(tKX)q + Mk, also by Lemma 1.6(i), it is
sufficient to show that KS + pπ∗(tKX)|Sq + Mk|S is effective. When t = 0, then
h0(S,KS + Mk|S) ≥ 2 by Lemma 1.2, because h0(S,Mk|S) ≥ 2. When t > 0,
choose a 1-dimensional sub-system |C| in the moving part of

∣∣ Mk|S
∣∣. Modulo

blowing-ups, we can suppose |C| to be free from base points and then C is nef and
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C ≤ Mk|S . We have g(C) ≥ 2. Because π∗(tKX)|S is a nef and big Q-divisor on
S, by the Kawamata-Viehweg vanishing theorem, we also get a surjective map

H0(S,KS + pπ∗(tKX)|Sq+ C) −→ H0(C,KC +D) −→ 0,

where D := pπ∗(tKX)|Sq
∣∣
C

is a divisor on C with positive degree. Thus we have
h0(C,KC + D) ≥ 2. This leads to the effectiveness of (2k + t+ 1)KX′ . Moreover,
actually we have proved that dimφm(S) ≥ 1 for m ≥ 2k + 1.

Now we prove that φ3k+1 is generically finite. Considering the system

|KX′ + p2kπ∗(KX)q+Mk|,
as we have shown above that (2k+1)KX′ is effective, so |KX′+p2kπ∗(KX)q+Mk|
can distinguish general S. By the Kawamata-Viehweg vanishing theorem, we have

|KX′ + p2kπ∗(KX)q+ S|
∣∣
S

= |KS + p2kπ∗(KX)q|S
∣∣ .

We have ∣∣ KS + p2kπ∗(KX)q|S
∣∣⊃ |KS + pkπ∗(KX)|Sq+Mk|S

∣∣ .
Noting that h0(S,Mk|S) ≥ 2, KS + pkπ∗(KX)|Sq ≥ KS + Mk|S , which is also
effective by Lemma 1.2, and kπ∗(KX)|S is a nef and big Q-divisor on S, it is easy
to verify that

∣∣ KS + pkπ∗(KX)|Sq+Mk|S
∣∣ gives a generically finite map. In fact,

choose a 1-dimensional sub-system |C| in the moving part of
∣∣Mk|S

∣∣. For the same
reason, we can suppose |C| to be free from base points.

∣∣ KS + pkπ∗(KX)|Sq+C
∣∣

can distinguish general C, and we have

|KS + pkπ∗(KX)|Sq+ C|
∣∣
C

= |KC +D|,
where D is a divisor on C with positive degree. Because g(C) ≥ 2, it follows that
h0(KC +D) ≥ 2 and |KC +D| gives a generically finite map.

Finally, we want to show that φm is birational for m ≥ 9k+4. Let t := m−7k−3;
then t ≥ 2k+ 1. Denote by M3k+1 the moving part of |(3k+ 1)KX′| and by Mt the
moving part of |tKX′ |. We have

|KX′ + p(t+ 6k + 2)π∗(KX)q+Mk| ⊂ |mKX′ |.
Because t+ 6k+ 3 > 2k+ 1, KX′ + p(t+ 6k + 2)π∗(KX)q is effective; thus the left
system in the above can distinguish general S. Furthermore, the vanishing theorem
gives

|KX′ + p(t+ 6k + 2)π∗(KX)q+Mk|
∣∣
S

= |KS + L|,
where L := p(t+ 6k + 2)π∗(KX)q

∣∣
S
≥ 2M3k+1|S +Mt|S . By Lemma 1.4, |KS +L|

gives a birational map, and so does |mKX′ |.
Case 2. dimφk(X) = 1.

In this case, W is a nonsingular curve of genus b. Let F be a general fibre of
f ; then F is an irreducible smooth projective surface of general type. We have
Mk ∼lin

∑
Fi, where the Fi are fibres of f for each i.

By a parallel argument as in the proof of Theorem 2.3.1, we see that φm is
birational for m ≥ 2k + 4 if b > 0. And if b = 0 while F is a surface with the
invariants

(
K2
F0
, pg(F )

)
= (1, 2) or (2, 3), then φm is birational for m ≥ 10k + 7.

Otherwise, we use Kollár’s method. From 2.2, we know that φ7k+3 is birational
and dimφ5k+2(X) ≥ 2. Thus, by Lemma 1.7, mKX′ is effective for m ≥ 6k +
4. Since we have |KX′ + p(5k + 2)π∗(KX)q + F |

∣∣
F

= |KF + D| where D :=
p(5k + 2)π∗(KX)q

∣∣
F

is effective and h0(F,D) ≥ 2, we see that KF +D is effective
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and thus (6k+3)KX′ is effective. So φm is birational for m ≥ 13k+6, which means
that φ13k+6 is stably birational.

Theorem 2.3.3. Let X be a nonsingular projective threefold of general type and
suppose Pk(X) ≥ 3. Then φm is birational for all m ≥ 10k + 8.

Proof. When dimφk(X) ≥ 2, we know from Case 1 of Theorem 2.3.2 that φm is
birational for m ≥ 9k + 4. When |kKX | is composed of a pencil, from the proof
of Theorem 2.3.1, we see that φk will derive a fibration f : X ′ −→ W onto a
nonsingular curve. If b := g(W ) > 0, then φm is birational for m ≥ 2k + 4.

The remaining case is the one when b = 0. We have an injection O(2) ↪→ f∗ω
k
X′ .

So, for each p > 0, we have

O(1)⊗ f∗ωpX′/P1 = O(2p+ 1)⊗ f∗ωpX′ ↪→ f∗ω
k(p+1)+p
X′ .

Thus Kollár’s method tells that φ6k+5 is birational, φ4k+3 is generically finite and
that dimφ3k+2(X) ≥ 2. Now using our method, we can see that mKX′ is effective
for m ≥ 4k+ 4 by Lemma 1.7. Since (4k+ 3)KX′ is also effective, φm is birational
for m ≥ 10k + 8.

Corollary 2.3.2. Let X be a nonsingular projective threefold of general type and
suppose pg(X) ≥ 3. Then φm is birational for m ≥ 11.

Proof. Keep the same notation as in the proof of Theorem 2.3.2. When dimφ1(X)
≥ 2, we set L3 := 4KX′ , L2 = L1 := KX′ . Then |L3| gives a generically finite map
by virtue of Case 1, Theorem 2.3.2. Using Lemma 1.5, we see that |KX′ + 2L3 +
L2 + L1| gives a birational map. Thus φ11 is birational.

When dimφ1(X) = 1, we see from the proof of Theorem 2.3.3 that φ11 is also
birational.

Theorem 2.3.1, Theorem 2.3.2, Theorem 2.3.3 and Corollary 2.3.2 imply the
main theorem.

3. Open problems

3.1. Let X be a nonsingular projective variety of general type of dimension n. We
define
k0(X) := min{k| Pk(X) ≥ 2};
ks(X) := min{k| φm is birational for m ≥ k}, which is called the canonical

stability of X ;
µs(X) := ks(X)

k0(X) , which is called the relative canonical stability of X . Obviously,
µs(X) is a birational invariant.
µs(n) := sup{µs(X)| X is a n-fold of general type}, which is called the n-th

relative canonical stability.
It is well-known that µs(1) = 3 and µs(2) = 5 ([1]). From the main theorem, we

have µs(3) ≤ 16. What is the exact value of µs(3)? It is also interesting to study
µs(n) for n ≥ 4, even if we don’t know whether we should have µs(n) < +∞.

3.2. We would like to ask a very natural question which never happens in the
surface case.

Question. Do there exist a smooth projective threefold X of general type and two
positive integers k1 < k2 such that φk1 is birational while φk2 is not birational?
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Of course, it may happen for some threefold that Pk1 > Pk2 even if k1 < k2. But
we have not found any counterexample yet to the above question.
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