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FRAME WAVELET SETS IN R

X. DAI, Y. DIAO, AND Q. GU

(Communicated by David R. Larson)

Abstract. In this paper, we try to answer an open question raised by Han
and Larson, which asks about the characterization of frame wavelet sets. We
completely characterize tight frame wavelet sets. We also obtain some nec-
essary conditions and some sufficient conditions for a set E to be a (general)
frame wavelet set. Some results are extended to frame wavelet functions that
are not defined by frame wavelet set. Several examples are presented and
compared with some known results in the literature.

§1. Introduction

A collection of elements {xj : j ∈ J } in a Hilbert space H is called a frame if
there exist constants A and B, 0 < A ≤ B <∞, such that

A‖f‖2 ≤
∑
j∈J
|〈f, xj〉|2 ≤ B‖f‖2(1)

for all f ∈ H. The supremum of all such numbers A and the infimum of all such
numbers B are called the frame bounds of the frame and denoted by A0 and B0

respectively. The frame is called a tight frame when A0 = B0 and is called a
normalized tight frame when A0 = B0 = 1. Any orthonormal basis in a Hilbert
space is a normalized tight frame.

The concept of frame first appeared in the late 40’s and early 50’s (see [6], [13]
and [12]). The development and study of wavelet theory during the last decade also
brought new ideas and attention to frames because of their close connections. For
a glance of the recent development and work on frames and related topics, see [1],
[3], [4], [5], [7], [8] and [10].

Let D, T be dilation and translation operators respectively on L2(R). Namely
(Df)(x) =

√
2f(2x) and (Tf)(x) = f(x − 1) for any f ∈ L2(R). D, T are both

unitary operators, i.e., ‖Df‖ = ‖Tf‖ = ‖f‖ for any f ∈ L2(R). In this paper, we
are interested in frames of L2(R) of the form

{ψn,l(x)} = {2n2 ψ(2nx− `) : n, ` ∈ Z} = {DnT `ψ : n, ` ∈ Z},(2)

where ψ ∈ L2(R). The function ψ ∈ L2(R) is called a frame wavelet for L2(R) if
(2) is a frame of L2(R). Namely, there exist two positive constants A ≤ B such

Received by the editors November 15, 1999.
2000 Mathematics Subject Classification. Primary 46N99, 46B28.

c©2000 American Mathematical Society

2045



2046 X. DAI, Y. DIAO, AND Q. GU

that for any f ∈ L2(R),

A‖f‖2 ≤
∑
n,`∈Z

|〈f,DnT `ψ〉|2 ≤ B‖f‖2.(3)

When (2) is a (normalized) tight frame in L2(R), then ψ is called a (normalized)
tight frame wavelet of L2(R). A characterization of the normalized tight frame
wavelets in L2(R) is obtained in [8].

In this paper, we will devote ourselves to the investigation of the frame wavelets
defined in the following way. Let E be a Lebesgue measurable set of finite measure.
Define ψ ∈ L2(R) by ψ̂ = 1√

2π
χE , where ψ̂ is the Fourier transform of ψ. If ψ so

defined is a frame wavelet for L2(R), then the set E is called a frame wavelet set
(for L2(R)). Similarly, E is called a (normalized) tight frame wavelet set if ψ is a
(normalized) tight frame wavelet. This study may be useful in the operator theory
since from an operator theoretic point of view, frame wavelets for L2(R) are just
the so-called frame vectors for the unitary system U = {DnT `|n, ` ∈ Z} ([7]).

A characterization of normalized tight frame wavelet sets is obtained in [7].
It can also be induced from a characterization of normalized tight frame wavelet
obtained in [8]. A necessary condition for a function in L2(R) to be a frame wavelet
for L2(R) is obtained in [8]. However, the question of how to characterize frame
wavelets in general and frame wavelet sets in particular remains open ([7]). In this
paper, we obtain a necessary condition and a sufficient condition for a set to be a
frame wavelet set. Though we are still a few steps away from a characterization of
frame wavelet sets, we are able to characterize tight frame wavelet sets. This result
induces the known characterization of normalized tight wavelet sets. It also shows
that the frame bound for the tight frame corresponding to a tight frame wavelet
set is always an integer. We need to point out that it is not trivial to characterize
the tight frame wavelet sets. Although a normalized tight frame wavelet can be
obtained from a tight frame wavelet ψ by dividing its frame bound A0 = B0, ψ/A0

is no longer defined by an inverse Fourier transform of a function of the form 1√
2π
χE

while ψ itself is defined this way.
This paper will be organized in the following way. In section 2, we introduce

some definitions, prelimilary lemmas and the main results. In section 3, we prove
several lemmas. In section 4, we prove the main theorems. In the last section,
we will furnish several examples. We will also extend some of our results to frame
wavelets that are not defined by frame wavelet sets. These will be compared with
some known necessary conditions for frame wavelets in the literature.

§2. Definitions and main results

Throughout this paper, we use ψ̂ to denote the Fourier transformation of ψ. The
Fourier transformation is normalized so that it is a unitary operator. Since (3) is
equivalent to

A‖f‖2 ≤
∑
n,`∈Z

|〈f, D̂nT̂ `ψ̂〉|2 ≤ B‖f‖2, ∀f ∈ L2(R),(4)

we may work with (4) instead of (3).
Let E be a measurable set. x, y ∈ E are δ∼ equivalent if x = 2ny for some integer

n. The δ-index of a point x in E is the number of elements in its δ∼ equivalent
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class and is denoted by δE(x). Let E(δ, k) = {x ∈ E : δE(x) = k}. Then E is the
disjoint union of the sets E(δ, k). Let

δ(E) =
⋃
n∈Z

2−n
(
E ∩

(
[−2n+1π,−2nπ) ∪ [2nπ, 2n+1π)

))
.

The above is a disjoint union if and only if E = E(δ, 1), as one can easily check.
The proof of the following lemma can be found in [2].

Lemma 1. If E is a Lebesgue measurable set, then each E(δ, k) (k ≥ 1) is also
Lebesgue measurable. Furthermore, each E(δ, k) is a disjoint union of k measurable
sets {Ej(δ, k)}, 1 ≤ j ≤ k, such that Ej(δ, k) δ∼ Ej′(δ, k) for any 1 ≤ j, j′ ≤ k.

Similarly, x, y ∈ E are τ∼ equivalent if x = y + 2nπ for some integer n. The
τ -index of a point x in E is the number of elements in its τ∼ equivalent class and
is denoted by τE(x). Let E(τ, k) = {x ∈ E : τE(x) = k}. Then E is the disjoint
union of the sets E(τ, k). Define τ(E) =

⋃
n∈Z

(
E∩

[
2nπ, 2(n+1)π

)
−2nπ

)
. Again,

this is a disjoint union if and only if E = E(τ, 1). The proof of the following lemma
can also be found in [2].

Lemma 2. If E is a Lebesgue measurable set, then each E(τ, k) (k ≥ 1) is also
Lebesgue measurable. Furthermore, each E(τ, k) is a disjoint union of k measurable
sets {E(j)(τ, k)}, 1 ≤ j ≤ k, such that E(j)(τ, k) τ∼ Ej′(τ, k) for any 1 ≤ j, j′ ≤ k.

Remark 1. If E is of finite measure, then E(τ,∞) is of zero measure.

Remark 2. The decompositions of E(δ, k) (resp. E(τ, k)) into Ej(δ, k) (resp.
E(j)(τ, k)) are not unique in general. However, one of them is guaranteed by the
procedure of construction in [2]. To avoid confusion, in this text we always assume
that these sets are (uniquely) defined in that way. But our results do not depend
on the decomposition as long as all sets involved are measurable.

Now let E be a Lebesgue measurable set with finite measure. For any f ∈ L2(R),
let HEf be the following formal summation:

(HEf)(s) =
∑
n,`∈Z

〈f, D̂nT̂ `
1√
2π
χE〉D̂nT̂ `

1√
2π
χE(s).(5)

Notice that if HEf converges to a function in L2(R) under the L2(R) norm, then
equation (4) (with ψ̂ = 1√

2π
χE) is equivalent to

A‖f‖2 ≤ 〈HEf, f〉 ≤ B‖f‖2.(6)

We outline the main results obtained in this paper below.

Theorem 1. Let E be a Lebesgue measurable set with finite measure. Then the
following statements are equivalent:

(i) HE defines a bounded linear operator in L2(R), that is, HEf converges in
L2(R) for any f ∈ L2(R) and ‖HEf‖ ≤ b‖f‖ for some constant b > 0.

(ii) There exists a constant B > 0 such that
∑
n,`∈Z |〈f, D̂nT̂ ` 1√

2π
χE〉|2 ≤ B‖f‖2

for all f ∈ L2(R).
(iii) There exists a constant M > 0 such that µ(E(δ,m)) = 0 and µ(E(τ,m)) = 0

for any m > M .
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Theorem 2. Let E be a Lebesgue measurable set with finite measure. Then E is a
frame wavelet set if (i)

⋃
n∈Z 2nE(τ, 1) = R and (ii) there exists M > 0 such that

µ(E(δ,m)) = 0 and µ(E(τ,m)) = 0 for any m > M .
Furthermore, in this case, the lower frame bound is at least 1, and the upper

frame bound is at most M
5
2 .

Theorem 3. Let E be a Lebesgue measurable set with finite measure. If E is a
frame wavelet set, then (i)

⋃
n∈Z 2nE = R and (ii) there exists M > 0 such that

µ(E(δ,m)) = 0 and µ(E(τ,m)) = 0 for any m > M .

Theorem 4. Let E be a Lebesgue measurable set with finite measure. Then E
is a tight frame set if and only if E = E(τ, 1) = E(δ, k) for some k ≥ 1 and⋃
n∈Z 2nE = R.

Corollary 1. If E is a tight frame wavelet set, then the frame bound is an integer.

Corollary 2. E is a normalized tight frame wavelet set if and only if E = E(τ, 1) =
E(δ, 1) and

⋃
n∈Z 2nE = R.

Corollary 3. If E = E(τ, 1),
⋃
n∈Z 2nE(τ, 1) = R and there exist 1 ≤ k1 ≤ k2

such that µ(E(δ,m)) = 0 for m < k1 and m > k2, µ(E(δ, k1))µ(E(δ, k2)) 6= 0, then
E is a frame bound with lower bound k1 and upper bound k2.

§3. Lemmas

Let f be in L2(R) and let E be a Lebesgue measurable set in R. First we define
fkmj to be the 2k+1π periodical extension of f ·χ2kE(j)(τ,m) over R. In particular we
define f0

mj to be the 2π periodical extension of f ·χE(j)(τ,m) over R. Also for k ∈ Z,
we define

Hk
Ef =

∑
`∈Z
〈f, D̂kT̂ `

1√
2π
χE〉D̂kT̂ `

1√
2π
χE .(7)

When we speak of the convergence of the sum which defines Hk
Ef , we always

mean the convergence under the L2(R) norm unless otherwise stated. We now give
the following elementary lemma without proof.

Lemma 3. Let f be a 2π periodical function that is square integrable over [0, 2π].
Then for any measurable sets E, G such that E = E(τ, 1), G = G(τ, 1) and τ(E) =
τ(G), we have ‖f ·χE‖ = ‖f ·χG‖ = ‖f ·χτ(E)‖ and 〈f, χE〉 = 〈f, χG〉 = 〈f, χτ(E)〉.

Lemma 4. Let E be a Lebesgue measurable set in R with finite measure. Then (i)
f = H0

Ef for all f ∈ L2(R) with supp(f) ⊂ E if and only if (ii) E = E(τ, 1).

Proof. (ii)⇒(i). Let F = [0, 2π)\τ(E) and G = F ∪ E. Then G = G(τ, 1) and
τ(G) = [0, 2π) since E = E(τ, 1). If f ∈ L2(R) and supp(f) ⊂ E, then f ∈
L2(R) ·χG. However, { 1√

2π
e−i`s ·χG : ` ∈ Z} is an orthonormal basis for L2(R) ·χG,

so we have f(s) =
∑

`∈Z〈f, 1√
2π
e−i`s ·χG〉 1√

2π
e−i`s ·χG(s) = H0

Gf. Using f = f ·χE ,
χE · χG = χE and 〈f, 1√

2π
e−i`s · χG〉 = 〈f, 1√

2π
e−i`s · χE〉, we get f = χEf =

χE ·
∑
`∈Z〈f, 1√

2π
e−i`s · χG〉 1√

2π
e−i`s · χG(s) = H0

Ef.

(i)⇒(ii). Assume that E is a set which satisfies (i) but not (ii). Then µ(E(τ, k)) >
0 for some k > 1 where µ is the Lebesgue measure. Let g(s) = χE(1)(τ,k)(s) −
χE(2)(τ,k)(s). By Lemma 3,

∫
E(1)(τ,k) e

i`sds =
∫
E(2)(τ,k) e

i`sds ∀` ∈ Z. It then follows
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that 〈g, 1√
2π
e−i`s · χE〉 = 0 for all ` ∈ Z. Since supp(g) ⊂ E and g ∈ L2(R), (i)

holds for g. That leads to g = 0, a contradiction.

Lemma 5. Let E, F be Lebesgue measurable sets of finite measure such that
τ(E(τ, k)) ∩ τ(F ) = ∅ for some natural number k. Then for any f ∈ L2(R),
we have ∑

`∈Z
〈f(s),

1√
2π
e−i`s · χE(τ,k)〉

1√
2π
e−i`sχF (τ,m) = 0(8)

for any m ≥ 1 under the L2(R) norm. Consequently,∑
`∈Z
〈f(s),

1√
2π
e−i`s · χE(τ,k)〉

1√
2π
e−i`s

converges to 0 for almost all s ∈ R that is not τ∼ to any point in E(τ, k).

Proof. For any 1 ≤ j ≤ k and 1 ≤ n ≤ m, consider G = E(j)(τ, k) ∪ F (n)(τ,m).
We have G = G(τ, 1). By Lemma 4, fχG = H0

Gf. Multiplying both sides of this by
χF (n)(τ,m), we get

fχF (n)(τ,m) =
∑
`∈Z
〈f(s),

1√
2π
e−i`s · χG〉

1√
2π
e−i`s · χF (n)(τ,m).(9)

On the other hand, by Lemma 4, we also have fχF (n)(τ,m) = H0
F (n)(τ,m)

f. Subtract-
ing this from (9), we get

∑
`∈Z〈f(s), 1√

2π
e−i`s · χE(j)(τ,k)〉 1√

2π
e−i`s · χF (n)(τ,m) = 0.

This then leads to
∑

`∈Z〈f(s), 1√
2π
e−i`s · χE(τ,k)〉 1√

2π
e−i`s · χF (τ,m) = 0. The last

statement in the lemma is obvious since the convergence under L2(R) norm implies
almost everywhere convergence.

Lemma 6. Let E be a Lebesgue measurable set in R with finite positive measure.
Then H0

E(τ,m)f =
∑m
j=1 f

0
mj · χE(τ,m) for any f ∈ L2(R).

Proof. First, we have

m∑
j=1

f0
mj · χE(τ,m) =

m∑
j=1

f0
mj(

m∑
i=1

χE(i)(τ,m)) =
m∑

i,j=1

f0
mj · χE(i)(τ,m).

So by Lemma 4,

f0
mj · χE(i)(τ,m) =

∑
`∈Z
〈f0
mj ,

1√
2π
e−i`s · χE(i)(τ,m)〉

1√
2π
e−i`sχE(i)(τ,m).

Since

〈f0
mj,

1√
2π
e−i`s · χE(i)(τ,m)〉 = 〈f0

mj ,
1√
2π
e−i`s · χE(j)(τ,m)〉

= 〈f, 1√
2π
e−i`s · χE(j)(τ,m)〉
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by Lemma 3, we get
m∑
j=1

f0
mj · χE(τ,m) =

m∑
i,j=1

∑
`∈Z
〈f, 1√

2π
e−i`s · χE(j)(τ,m)〉

1√
2π
e−i`sχE(i)(τ,m)

=
∑
`∈Z

m∑
i,j=1

〈f, 1√
2π
e−i`s · χE(j)(τ,m)〉

1√
2π
e−i`sχE(i)(τ,m)

=
∑
`∈Z
〈f, 1√

2π
e−i`s · χE(τ,m)〉

1√
2π
e−i`sχE(τ,m) = H0

E(τ,m)f.

Lemma 7. Let E be a Lebesgue measurable set in R with finite positive measure.
The following statements are equivalent:

(i) There exists a constant a > 0 such that
∑
`∈Z |〈f(s), 1√

2π
e−i`s ·χE〉|2 ≤ a‖f‖2

for all f ∈ L2(R).
(ii) There exists M > 0 such that µ(E(τ,m)) = 0 for all m ≥M .

Proof. (ii)⇒(i). By Lemmas 5 and 6, H0
Ef =

∑M
m=1

∑m
j=1 f

0
mj · χE(τ,m) where the

convergence is under the L2(R) norm. By Lemma 3,∫
R
|f0
mjχE(τ,m)|2ds =

∫
E(τ,m)

|f0
mj|2ds = m

∫
E(j)(τ,m)

|f |2ds.

So ∫
E(τ,m)

|
m∑
j=1

f0
mj |2ds ≤ m2

∫
E(τ,m)

|f |2ds.

Therefore,

‖H0
Ef‖2 =

∫
E

|
M∑
m=1

m∑
j=1

f0
mj |2ds ≤M

M∑
m=1

m2

∫
E(τ,m)

|f |2ds

≤ M3

∫
E

|f |2ds ≤M3

∫
R
|f |2ds = M3‖f‖2.(10)

It follows that
∑

`∈Z |〈f(s), 1√
2π
e−i`s ·χE〉|2 = 〈H0

Ef, f〉 ≤ ‖H0
Ef‖ ·‖f‖ ≤M

3
2 ‖f‖2.

(i)⇒(ii). Assume this is not true; then (i) holds for some E that does not satisfy
(ii). Thus, µ(E(τ,m0)) > 0 for some m0 > a. Define f = χE(τ,m0) ∈ L2(R).
We have ‖f‖2 = µ(E(τ,m0)). By the assumption, we have

∑
`∈Z |〈f(s), 1√

2π
e−i`s ·

χE〉|2 ≤ a‖f‖2 = aµ(E(τ,m0)). On the other hand, the left hand side in the above
inequality is 〈f,H0

Ef〉 = 〈f,H0
E(τ,m0)f〉 since 〈f(s), 1√

2π
e−i`s·χE〉 = 〈f(s), 1√

2π
e−i`s·

χE(τ,m0)〉. By Lemma 6,

H0
Ef =

m0∑
j=1

f0
m0jχE(τ,m0) =

m0∑
j=1

χE(τ,m0) = m0χE(τ,m0) = m0f.

Therefore, 〈f,H0
Ef〉 = m0µ(E(τ,m0)) = m0‖f‖2. This contradicts the assumption

that a < m0.
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§4. Proofs of the theorems

Proof of Theorem 1. (i)⇒(ii). This is obvious from ‖〈f, g〉‖ ≤ ‖f‖‖g‖.
(iii)⇒(i). Substitute s/2k = t in (7); we get (using Lemma 7)

Hk
Ef =

M∑
m=1

m∑
j=1

fkmj · χ2kE(τ,m),

by definition of fkmj . Similar to the proof of Lemma 7, we have

∫
R
|Hk

Ef |2ds ≤
∫

2kE

( M∑
m=1

m∑
j=1

|fkmj|
)2
ds ≤M3

∫
2kE

|f |2 = M3‖f · χ2kE‖2.

(11)

Notice that
∑
k∈Z |Hk

Ef | converges pointwise since for each s ∈ R, there are at most
M nonzero terms in there. We now proceed to prove that

∑
k∈Z |Hk

Ef | ∈ L2(R).
Note that the given condition implies

∑
j∈Z χ2jE ≤M . Since the support of |Hk

Ef |
is in 2kE, for any L1, L2 > 0, we have

∫
R

( ∑
−L1≤k≤L2

|Hk
Ef |
)2
ds ≤

∑
−L1≤p,q≤L2

∫
2pE∩2qE

|Hp
Ef | · |H

q
Ef |ds

≤ 1
2

∑
−L1≤p,q≤L2

( ∫
2pE∩2qE

|Hp
Ef |2ds+

∫
2pE∩2qE

|Hq
Ef |2ds

)
=

∑
−L1≤p≤L2

∫
2pE

|Hp
Ef |2

∑
−L1≤q≤L2

χ2qEds ≤M
∑

−L1≤p≤L2

∫
2pE

|Hp
Ef |2ds

= M
∑

−L1≤p≤L2

∫
R
|Hp

Ef |2ds ≤M4
∑

−L1≤p≤L2

∫
2pE

|f |2ds

= M4

∫
R
|f |2

∑
−L1≤p≤L2

χ2pEds ≤M5

∫
R
|f |2ds = M5‖f‖2.

(12)

Therefore,
∫
R
(∑

k∈Z |Hk
Ef |
)2
ds ≤M5‖f‖2 by Fatou’s lemma. This also leads to

lim
K1,K2→∞

∫
R

( ∑
k≤−K1,k≥K2

|Hk
Ef |
)2
ds = 0.(13)

That is,
∑
k∈Z |Hk

Ef | (hence
∑

k∈ZH
k
Ef as well) converges in L2(R).

Let ak` = 〈f, 1√
2π
D̂kT̂ `χE〉 for convenience. By Lemma 7, we have

∑
`∈Z |ak`|2 =

〈Hk
Ef, f〉 ≤M

3
2 ‖f · χ2kE‖2. It follows that∑

k,`∈Z
|ak`|2 ≤M

3
2

∑
k∈Z
‖f · χ2kE‖2 ≤M

5
2 ‖f‖2.(14)

We now show that

HEf −→
∑
k∈Z

Hk
Ef =

∑
k∈Z

M∑
m=1

m∑
j=1

fkmj · χ2kE(τ,m)(15)
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in L2(R) by showing that

lim
K1,K2,L1,L2→∞

∫
R
|

∑
−K1≤k≤K2,−L1≤`≤L2

ak`D̂
kT̂ `

1√
2π
χE −

∑
k∈Z

Hk
Ef |2 = 0.

(16)

In light of (13), this is equivalent to

lim
K1,K2,L1,L2→∞

∫
R
|

∑
−K1≤k≤K2

( ∑
−L1≤`≤L2

ak`D̂
kT̂ `

1√
2π
χE −Hk

Ef
)
|2ds = 0.

Similar to the approach used in obtaining (12), we have∫
R
|

∑
−K1≤k≤K2

( ∑
−L1≤`≤L2

ak`D̂
kT̂ `

1√
2π
χE −Hk

Ef
)
|2ds

≤ M
∑

−K1≤k≤K2

∫
R
|

∑
−L1≤`≤L2

ak`D̂
kT̂ `

1√
2π
χE −Hk

Ef |2ds.(17)

Since each Hk
Ef converges in L2(R),∫

R
|

∑
−L1≤`≤L2

ak`D̂
kT̂ `

1√
2π
χE −Hk

Ef |2ds

= lim
L3,L4→∞

∫
R
|
∑
(3,4)

ak`D̂
kT̂ `

1√
2π
χE |2ds(18)

where
∑

(3,4) is the summation over {−L3 ≤ ` ≤ −L1, L2 ≤ ` ≤ L4}. Let u = s
2k

in the above and let g`(u) = 1√
2π
e−i`u for short; we get∫

R
|
∑
(3,4)

ak`D̂
kT̂ `

1√
2π
χE |2ds =

∫
R
|
∑
(3,4)

ak`g`(u)χE |2du

=
M∑
m=1

∫
R
|
∑
(3,4)

ak`g`(u)χE(τ,m)|2du =
M∑
m=1

m

∫
R
|
∑
(3,4)

ak`g`(u)χτ(E(τ,m))|2du

≤ M

∫
R
|
∑
(3,4)

ak`g`(u)χτ(E)|2du = M

∫ 2π

0

|
∑
(3,4)

ak`g`(u)|2χτ(E)du

≤ M

∫ 2π

0

|
∑
(3,4)

ak`g`(u)|2du = M
∑
(3,4)

|ak`|2 ≤M
( ∑
`≤−L1,`≥L2

|ak`|2
)
.

Therefore, (17) is bounded by M2
∑
k∈Z

∑
`≤−L1,`≥L2

|ak`|2. However, this goes to
0 as L1, L2 →∞ because of (14).

(ii)⇒(iii). If there exists m0 > B such that µ(E(τ,m0)) > 0, then we will derive
a contradiction the same way as we did in the proof of Lemma 7, since

∑
`∈Z |a0`|2 ≤∑

k,`∈Z |ak`|2 ≤ B‖f‖2. So µ(E(τ,m)) = 0 for all m > B. Now, if µ(E(δ,m0)) > 0
for some m0 > B (this includes the case m0 =∞), then there exists a subset F in
E such that 2kjF ⊂ E for some q > B integers kq−1 > kq−2 > · · · > k0 = 0. To
see this, first let En = E(δ,m0) ∩

(
(−∞,−2n) ∪ (2n,∞)

)
. Notice that µ(En) → 0

as n → ∞, so when n is large enough, µ(En) << µ(E(δ,m0)). It follows that
µ
(⋃

k≤0 2kEn
)
<< µ(E(δ,m0)) when n is large enough, say n ≥ n0 for some n0 > 0.

Let D = E(δ,m0)\En0 . Then a point in D is not 2-dilation equivalent to any point



FRAME WAVELET SETS IN R 2053

of En0 by its definition, that is, all its equivalent points are in [−2n0 , 2n0 ]. Consider
Dk = D ∩

(
[−2n0−k,−2n0−k−1) ∪ [2n0−k−1, 2n0−k)

)
, k ≥ 0. Since µ(D) > 0 and

[−2n0, 2n0) =
⋃
k≥0

(
[−2n0−k,−2n0−k−1) ∪ [2n0−k−1, 2n0−k)

)
, there exists a k0 ≥ 0

such that µ(Dk0) > 0 but µ(Dk) = 0 if k < k0. Define Dk0 = F1. Now we can
consider the sets 2−kF1, k > 0. Since µ(F1) > 0, µ(2kF1 ∩ E) = 0 for any k > 0
and F1 = F1(δ,m0) by its choice, there exists k1 > 0 so that µ(E ∩ 2−k1F1) > 0
and µ(E ∩ 2−kF1) = 0 if 0 < k < k1. Let F2 = E ∩ 2−k1F1. This process can now
be repeated at least [B] times and the last set obtained is the F we need.

Now define f = χF . By Lemma 7, Hk
Ef converges for each k. In particular, for

k = 0,−k1,...,−kq−1, we have Hk
Ef =

∑M
m=1

∑m
j=1 f

k
mjχ2kE ≥ f. It then follows

that
∑

k,`∈Z |ak`|2 ≥
∑0

j=−(q−1)

∑
`∈Z |akj`|2 =

∑0
j=−(q−1)〈H

−kj
E f, f〉 ≥ q‖f‖2 >

B‖f‖2. This contradicts the assumption.

Note. (15) implies the following decomposition of HEf :

HEf = HE(τ,1)f +HE(τ,2)f + ...+HE(τ,m)f.(19)

Proof of Theorem 2. By (14) and Theorem 1, we have |〈HEf, f〉| ≤ M
5
2 ‖f‖2. On

the other hand,
m∑
j=1

fkmj · χ2kE(τ,m) =
∑
`∈Z
〈f, D̂kT̂ `

1√
2π
χE(τ,m)〉D̂kT̂ `

1√
2π
χE(τ,m),

hence 〈
∑m

j=1 f
k
mj · χ2kE(τ,m), f〉 =

∑
`∈Z |〈f, D̂kT̂ ` 1√

2π
χE(τ,m)〉|2 ≥ 0. It follows

that 〈HEf, f〉 =
∑

k∈Z
∑M

m=1

∑m
j=1〈fkmj · χ2kE(τ,m), f〉 ≥

∑
k∈Z〈f · χ2kE(τ,1), f〉 =∫

R |f |2
(∑

k∈Z χ2kE(τ,1)

)
ds ≥ ‖f‖2 since

∑
k∈Z χ2kE(τ,1) ≥ 1 by the given condition.

Proof of Theorem 3. This is obvious from Theorem 1.

Proof of Theorem 4. If E = E(δ, k) = E(τ, 1) for some k ≥ 1 and
⋃
n∈Z 2nE = R

(modulo a null set), then
∑

n∈Z χ2nE = k for almost all s ∈ R. So for any f ∈ L2(R),
we have 〈HEf, f〉 = 〈

∑
n∈Z fχ2nE , f〉 =

∫
R |f |

2
∑

n∈Z χ2nEds = k‖f‖2.
Now assume that E is a tight frame wavelet set but µ(E(τ,m0)) > 0 for some

m0 > 1. Let g = χE(1)(τ,m0), h = χE(2)(τ,m0) and f1 = g + h, f2 = g − h. Since
‖f1‖ = ‖f2‖, we must have 〈HE(f1), f1〉 = 〈HE(f2), f2〉. However, on the other
hand, we have

〈HE(f1), f1〉 = 〈HEg+HEh, g+h〉 = 〈HEg, g〉+(〈HEg, h〉+ 〈HEh, g〉)+ 〈HEh, h〉.

Similarly, 〈HE(f2), f2〉 = 〈HEg, g〉−(〈HEg, h〉+〈HEh, g〉)+〈HEh, h〉. Since HEg =∑
k∈Z

∑M
m=1

∑m
j=1 g

k
mjχ2kE(τ,m) contains the term χE(τ,m0) (with k = 0, m = m0

and j = 1) and the other terms in it are all nonnegative, we see that 〈HEg, h〉 > 0.
〈HEh, g〉 > 0 similarly. Thus 〈HE(f1), f1〉 6= 〈HE(f2), f2〉, a contradiction. Finally,
assume that µ(E(δ, k1)) 6= 0 and µ(E(δ, k2)) 6= 0 for some k1 6= k2. Let f1 = χE(δ,k1)

and f2 = χE(δ,k2). We leave it to our reader to check that HE(f1) = k1f1 and
HE(f2) = k2f2. This leads to 〈HE(f1), f1〉 = k1‖f1‖2 and 〈HE(f2), f2〉 = k2‖f2‖2.
Again, we get a contradiction.

The corollaries of the theorems now follow trivially and the proofs are omitted.
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§5. Examples and generalizations

Example 1. Let E = [−π,− π
2n ) ∪ [ π2n , π) where n ≥ 1 is an integer. Then E =

E(τ, 1) and E = E(δ, n); hence E is a tight frame wavelet set of frame bound n.

Example 2. Let E = [−π,−π2 ) ∪ [π4 , π). By Corollary 3, E is a frame wavelet set
with frame bounds a = 1 and b = 2.

Example 3. Let E = [− 3π
2 ,−

π
2 )∪[π4 , π). Then E is a frame wavelet set with lower

bound 1 since E(τ, 1) = [−π,−π4 ) ∪ [π4 ,
π
2 ) satisfies condition (i) of Theorem 2 and

E(δ,m) = E(τ,m) = ∅ for m > 2.

Example 4. Let E = [−3π,−π)∪ [π, 2π). Then E does not satisfy the conditions
in Theorem 2 since E1 = E(τ, 1) = [−2π,−π) so

⋃
n∈Z 2nE1 6= R. However, one

can prove that E is indeed a frame wavelet set with a positive lower bound and
4
√

2 an upper bound. The upper bound is easy to see since E(δ,m) = E(τ,m) = ∅
for all m > 2. To see that a positive lower frame bound exists, let f ∈ L2(R) and
define fr = f · χ[0,∞) and fl = f · χ(−∞,0). Apparently ‖f‖2 = ‖fl‖2 + ‖fr‖2. By
(19) and the proof of Theorem 2, we have

〈HEf, f〉 = 〈HE1f, f〉+ 〈HE2f, f〉 ≥
∑
k∈Z
‖f · χ2kE1‖2 = ‖fl‖2,

where E2 = E(τ, 2) = [−3π,−2π)∪[π, 2π). If ‖fl‖2 ≥ α‖f‖2 for some small positive
constant α (to be determined later), there is nothing to prove. So we only need
to consider the case ‖fl‖2 < α‖f‖2, that is, ‖fr‖2 > (1 − α)‖f‖2. Notice that
〈HE2fr, fr〉 = ‖fr‖2; we get

〈HEf, f〉 ≥ 〈HE2f, f〉
= 〈HE2fl, fl〉+ 〈HE2fr, fr〉+ 〈HE2fl, fr〉+ 〈HE2fr, fl〉
≥ ‖fr‖2 − (‖HE2fr‖ · ‖fl‖+ ‖fr‖ · ‖HE2fl‖
≥ ‖fr‖2 − 8

√
2‖fr‖ · ‖fl‖

≥ ((1 − α)− 8
√

2α(1− α))‖f‖2.

Apparently, if α is small enough, the above is greater than α‖f‖2. In fact, α can
be chosen to be 0.005.

This example shows that the condition given in Theorem 2 is not a necessary
condition of a frame wavelet set.

Example 5. Let E = [−π,−π2 ) ∪ [π, 2π). Then E is not a frame wavelet set. We
leave this to our reader to verify as an exercise. Compare this example with the
above example.

Hint: Let f = χ[−π,−π2 ) − χ[π, 3π2 ) and calculate HEf .
Not many results are known for general frame wavelet functions. One sufficient

condition for a general frame function is given in [8, chapter 8 (Theorem 3.2)]. It
is easy to see that the condition is not a sufficient condition as one can check that
Examples 3 and 4 above do not satisfy the conditions given there.

We conclude this paper with the following Theorem, which is a generalization of
Theorem 2. The proof is left to our reader. This points to a direction where the
results obtained in this paper may be applied.
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Theorem 5. Let ψ ∈ L2(R) such that the support E of ψ̂ is of finite measure.
Then ψ is a general frame function if (i) E satisfies the conditions in Theorem 2,
(ii) |ψ̂| is bounded above and (iii) |ψ̂| is bounded below by a positive constant on
E(τ, 1).
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