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ABSTRACT. In this paper, we try to answer an open question raised by Han
and Larson, which asks about the characterization of frame wavelet sets. We
completely characterize tight frame wavelet sets. We also obtain some nec-
essary conditions and some sufficient conditions for a set E to be a (general)
frame wavelet set. Some results are extended to frame wavelet functions that
are not defined by frame wavelet set. Several examples are presented and
compared with some known results in the literature.

§1. INTRODUCTION

A collection of elements {z; : j € J} in a Hilbert space H is called a frame if
there exist constants A and B, 0 < A < B < oo, such that

(1) AILFIP < K f ) < BIIFIP

JjeET
for all f € H. The supremum of all such numbers A and the infimum of all such
numbers B are called the frame bounds of the frame and denoted by Ay and By
respectively. The frame is called a tight frame when Ay = By and is called a
normalized tight frame when Ay = By = 1. Any orthonormal basis in a Hilbert
space is a normalized tight frame.

The concept of frame first appeared in the late 40’s and early 50’s (see [6], [13]
and [12]). The development and study of wavelet theory during the last decade also
brought new ideas and attention to frames because of their close connections. For
a glance of the recent development and work on frames and related topics, see [1],
@, @, B, [1, [ and [10].

Let D, T be dilation and translation operators respectively on L?(R). Namely
(Df)(x) = v2f(22) and (Tf)(z) = f(x — 1) for any f € L?(R). D, T are both
unitary operators, i.e., |Df| = [|Tf| = || f|| for any f € L*(R). In this paper, we
are interested in frames of L%(R) of the form

(2) {tna(2)} = {229 (2" — €) :n, 0 € Z} = {D"T" : n L € Z},
where ¢ € L?(R). The function ¢ € L*(R) is called a frame wavelet for L?(R) if

@) is a frame of L?(R). Namely, there exist two positive constants A < B such
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that for any f € L?(R),
(3) AFIP < 0 [ DT )P < BJIfIIP.

n, €L

When (@) is a (normalized) tight frame in L?(R), then 9 is called a (normalized)
tight frame wavelet of L?(R). A characterization of the normalized tight frame
wavelets in L?(R) is obtained in [8].

In this paper, we will devote ourselves to the investigation of the frame wavelets
defined in the following way. Let E be a Lebesgue measurable set of finite measure.
Define v € L*(R) by Y= \/%X& where 1 is the Fourier transform of 1. If ¢ so

defined is a frame wavelet for L2(R), then the set E is called a frame wavelet set
(for L2(R)). Similarly, E is called a (normalized) tight frame wavelet set if 9 is a
(normalized) tight frame wavelet. This study may be useful in the operator theory
since from an operator theoretic point of view, frame wavelets for L?(R) are just
the so-called frame vectors for the unitary system U = {D"T*|n, ¢ € Z} ([T]).

A characterization of normalized tight frame wavelet sets is obtained in [7].
It can also be induced from a characterization of normalized tight frame wavelet
obtained in [8]. A necessary condition for a function in L*(R) to be a frame wavelet
for L2(R) is obtained in [8]. However, the question of how to characterize frame
wavelets in general and frame wavelet sets in particular remains open ([7]). In this
paper, we obtain a necessary condition and a sufficient condition for a set to be a
frame wavelet set. Though we are still a few steps away from a characterization of
frame wavelet sets, we are able to characterize tight frame wavelet sets. This result
induces the known characterization of normalized tight wavelet sets. It also shows
that the frame bound for the tight frame corresponding to a tight frame wavelet
set is always an integer. We need to point out that it is not trivial to characterize
the tight frame wavelet sets. Although a normalized tight frame wavelet can be
obtained from a tight frame wavelet ¢ by dividing its frame bound Ay = By, /Ao
is no longer defined by an inverse Fourier transform of a function of the form \/%7 XE
while v itself is defined this way.

This paper will be organized in the following way. In section 2, we introduce
some definitions, prelimilary lemmas and the main results. In section 3, we prove
several lemmas. In section 4, we prove the main theorems. In the last section,
we will furnish several examples. We will also extend some of our results to frame
wavelets that are not defined by frame wavelet sets. These will be compared with
some known necessary conditions for frame wavelets in the literature.

§2. DEFINITIONS AND MAIN RESULTS

Throughout this paper, we use 12)\ to denote the Fourier transformation of ¢. The
Fourier transformation is normalized so that it is a unitary operator. Since () is
equivalent to

(4) AFIZ < S (DT ) < B|fI, Vf € LA(R),
n,lEZ

we may work with (@) instead of ().
Let E be a measurable set. z,y € E are 2 equivalent if x = 2™y for some integer

n. The J-index of a point x in F is the number of elements in its 2 equivalent
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class and is denoted by dg(z). Let E(d,k) = {x € E: dg(x) = k}. Then E is the
disjoint union of the sets FE(d, k). Let

sE) =J2 (Em ([~2"+r, —2mr) U [2"77,2"“77))).
neZ
The above is a disjoint union if and only if E = E(4, 1), as one can easily check.
The proof of the following lemma can be found in [2].

Lemma 1. If E is a Lebesgue measurable set, then each E(d,k) (k > 1) is also
Lebesgue measurable. Furthermore, each E (4, k) is a disjoint union of k measurable

sets {E7(8,k)}, 1 < j <k, such that E’(5, k) 2 E7'(6,k) for any 1< j,j' <k.

Similarly, =,y € E are ~ equivalent if z = y + 2nx for some integer n. The
7-index of a point z in E is the number of elements in its ~ equivalent class and
is denoted by 7g(z). Let E(1,k) = {v € E: tg(x) = k}. Then E is the disjoint
union of the sets E(7, k). Define 7(E) =, 5, (Eﬂ [2n7,2(n+1)7) — 2n7r). Again,
this is a disjoint union if and only if E = E(7,1). The proof of the following lemma
can also be found in [2].

Lemma 2. If E is a Lebesque measurable set, then each E(7,k) (k > 1) is also
Lebesgue measurable. Furthermore, each E(1,k) is a disjoint union of k measurable
sets {EUD(1,k)}, 1 < j <k, such that ED (7, k) ~ EI'(1,k) for any 1 < j,j' < k.

Remark 1. If E is of finite measure, then E(7, 00) is of zero measure.

Remark 2. The decompositions of E(6,k) (resp. FE(r,k)) into E’(6,k) (resp.
EU)(7,k)) are not unique in general. However, one of them is guaranteed by the
procedure of construction in [2]. To avoid confusion, in this text we always assume
that these sets are (uniquely) defined in that way. But our results do not depend
on the decomposition as long as all sets involved are measurable.

Now let E be a Lebesgue measurable set with finite measure. For any f € L?(R),
let Hg f be the following formal summation:

~ ~, 1 ~ =~y 1
(5) (Hef)(s)= ) (f,D"T"—=xg)D"T
n,%e:z Var Var
Notice that if Hg f converges to a function in L*(R) under the L?(R) norm, then
equation @) (with ¢ = \/% XE) is equivalent to

(6) AllfI? < (Hef, f) < BIIfI*.

We outline the main results obtained in this paper below.

Theorem 1. Let E be a Lebesgue measurable set with finite measure. Then the
following statements are equivalent:

(i) Hg defines a bounded linear operator in L?(R), that is, Hgf converges in
L3(R) for any f € L*(R) and |Hgf| < b||f|| for some constant b > 0.

(ii) There ezists a constant B > 0 such that 3, o7 [, ﬁnfé\/%XEH? < BJ|f|I?
for all f € L*(R).

(iii) There exists a constant M > 0 such that u(E(6,m)) = 0 and u(E(r,m)) =0
for any m > M.
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Theorem 2. Let E be a Lebesgue measurable set with finite measure. Then E is a
frame wavelet set if (i) U,cz 2" E(7,1) =R and (ii) there exists M > 0 such that
w(E(8,m)) =0 and u(E(Tr,m)) =0 for any m > M.

Furthermore, in this case, the lower frame bound is at least 1, and the upper
frame bound is at most M#%.

Theorem 3. Let E be a Lebesgue measurable set with finite measure. If E is a
frame wavelet set, then (i) |J,c,2"E = R and (ii) there exists M > 0 such that
w(E(6,m)) =0 and u(E(r,m)) =0 for any m > M.

Theorem 4. Let E be a Lebesgue measurable set with finite measure. Then E

is a tight frame set if and only if E = E(7,1) = E(6,k) for some k > 1 and
U, ez 2"F = R.

Corollary 1. If E is a tight frame wavelet set, then the frame bound is an integer.

Corollary 2. FE is a normalized tight frame wavelet set if and only if E = E(7,1) =
E(6,1) and |, ¢, 2"E = R.
Corollary 3. If E = E(7,1), U,z 2"E(7,1) = R and there exist 1 < ky < ko

such that W(E(d,m)) =0 for m < k1 and m > ko, p(E(0,k1))u(E(S, ke)) # 0, then
E is a frame bound with lower bound ki and upper bound k.

§3. LEMMAS

Let f be in L?(R) and let E be a Lebesgue measurable set in R. First we define
ffnj to be the 217 periodical extension of f - X2k EG) (r,m) Over R. In particular we
define fBLj to be the 27 periodical extension of f - x g)(r,m) over R. Also for k € Z,
we define

1 1
(7) Hyf = (f, DFT*—=xp) D" T* —xk.
E % V2T V2T

When we speak of the convergence of the sum which defines H% f, we always
mean the convergence under the L?(R) norm unless otherwise stated. We now give
the following elementary lemma without proof.

Lemma 3. Let f be a 2w periodical function that is square integrable over [0, 27].
Then for any measurable sets E, G such that E = E(7,1), G = G(7,1) and 7(E) =

7(G), we have || f-xe| = If-xcll = |f Xz | and {f,xe) = (f,xc) = (f, X+ @)
Lemma 4. Let E be a Lebesque measurable set in R with finite measure. Then (i)
f=HY%f for all f € L*(R) with supp(f) C E if and only if (ii) E = E(r,1).
Proof. (ii)=(i). Let F = [0,27)\7(F) and G = F U E. Then G = G(r,1) and
7(G) = [0,27) since E = E(r,1). If f € L*(R) and supp(f) C E, then f €
L?(R) - x¢. However, {\/%e*izs XG teZ}is an orthonormal basis for L?(R) - x¢,
so we have £(s) = Ypep(f, e xa) e xa(s) = HLS. Using f = f-xg,
Xe - xe = xg and (f, =™ - xq) = (f, =™ - xE), we get f = x&f =
XE ez S \/%eﬂzs : XG)\/%G%S -xG(s) = Hyf.

(i)=(ii). Assume that E is a set which satisfies (i) but not (ii). Then u(E(7,k)) >
0 for some k& > 1 where p is the Lebesgue measure. Let g(s) = Xp)(rk)(s) —
XE® (7, (5). By Lemma[3] fE<1>(T K etsds = fE<2>(T.k) e*sds VYl € Z. It then follows
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that (g, \/LQ—We*MS -xg) = 0 for all £ € Z. Since supp(g) C F and g € L*(R), (i)
holds for g. That leads to g = 0, a contradiction. O

Lemma 5. Let E, F be Lebesgue measurable sets of finite measure such that
T7(E(r,k)) N 7(F) = 0 for some natural number k. Then for any f € L*(R),
we have

1 —ils

1 )
8 s), ——e " xpr e rm) =0

for any m > 1 under the L?(R) norm. Consequently,

1 - 1
Z<f(8)a \/%e_ws 'XE(T,k)> \/%e

LET

—ils

converges to 0 for almost all s € R that is not ~ to any point in E(T,k).

Proof. For any 1 < j < k and 1 < n < m, consider G = EU)(1,k) U F™ (1, m).
We have G = G(7,1). By Lemmal, fxc = HZf. Multiplying both sides of this by
XF@) (r,m), WE get

1 —ils 1 —ils
9) IXpo (rm)y = Z<f(5)a\/—2—ﬂ€ ¢ 'XG>\/—2—7T€ X P (rm)-

LET

On the other hand, by Lemmaldl we also have fx g (r,m) = H?,W(T m)f. Subtract-

ing this from [{), we get >_,.,(f(s), \/%67% 'XE(j)(T,k)?\/%e%s “XF (rm) = 0.
This then leads to ), ,(f(s), #e”és 'XE(ﬂk))\/Lz_we*MS “ XF(r,m) = 0. The last
statement in the lemma is obvious since the convergence under L?(R) norm implies
almost everywhere convergence. O

Lemma 6. Let E be a Lebesgue measurable set in R with finite positive measure.
Then H%(Tm)f = Z;nﬂ f’?nj “XE(r,m) for any f € L*(R).

Proof. First, we have

m m m m
D Imi Xeeam) = D Fni QXm0 ram) = D Firg X6 (ram)-
Jj=1 j=1 i=1

i,j=1
So by Lemma [l
1

1 . )
f'ng *XE® (r,m) = Z<fr())1]a eiﬂs ’ XE(i>(T,m)> ei’MSXE(’:)(T,m)'
ez V2T V2T

Since

L i —ie
(fohis \/ﬁe X B () = (g \/—2_7re T XEG) (r,m))

(f, \/—z—ﬂeﬂjs “XEG) (r,m))
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by Lemma B we get

m

- I 1,
ngnj'XE(ﬂm) - ZZU, \/ﬂe wS'XE(J')(Tm’L)>\/—2_ﬂ_e MSXE(’L‘)(T,m)

j=1 i,j=1 L€

- 1, 1,
= > <f7Ee i 'XE(J')(T7TI’L)>\/—2—7T€ X B (rm)

el i,5=1
1 —ils 1 —ils 0
= Z<fv \/ﬂe 'XE(T,m)> \/ﬁe XE(r,m) = HE(T,m)f'
LET

O

Lemma 7. Let E be a Lebesgue measurable set in R with finite positive measure.
The following statements are equivalent: ‘

(i) There exists a constant a > 0 such that ) _,., [(f(s), \/%e*M&XEW <al| f|?
for all f € L*(R).

(ii) There exists M > 0 such that p(E(r,m)) =0 for all m > M.

Proof. (ii)=>(i). By Lemmas B and Bl HYf = Z%[:l Z;’;l f?nj “ XE(r,m) Where the
convergence is under the L?(R) norm. By Lemma [3]

/ 10X Pds = / 110, Pds = m \fP2ds.
R E(r,m) EG) (1,m)
So
m
> pfas <t [ (s
/E(T,m) jz:; / E(T,m)
Therefore,
M m M
|HYSP = / I SOS A, Pds <MY m? / | PPds
E  m=1j=1 m=1 E(r,m)
(10) < /E | P2ds < M° / |F[2ds = M| 7]

It follows that 3 ,ez |(f(s), Zh=e ™" xB)|* = (Hyf. ) < | HRf|- |1l < M3 £

(i)=-(ii). Assume this is not true; then (i) holds for some E that does not satisfy
(ii). Thus, u(E(r,mg)) > 0 for some mg > a. Define f = Xpg(r.m,) € L*(R).
We have || f[|* = u(E(7,mq)). By the assumption, we have Y, [(f(s), \/%e_ws .
xe)? < allf||? = au(E(r,mp)). On the other hand, the left hand side in the above
inequality is (f, H% f) = (f, H%(Tm())f) since (f(s), Vlz—weflzs-xﬂ = (f(s), \/Lz—ﬂeﬂ“'

XE(r,my))- By Lemmal[6]

mo mo
H%f = Z fgﬂonE(T»ml)) = ZXE(TJRO) = MoXE(r,mo) = mo f.
j=1 j=1

Therefore, (f, HY f) = mou(E(T,mg)) = mo|| f||?. This contradicts the assumption
that a < my. [l
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§4. PROOFS OF THE THEOREMS

Proof of Theorem [l (i)=-(ii). This is obvious from ||{f, g)|| < || f]lllgll-
(iii)=-(i). Substitute s/2*¥ =t in ([7)); we get (using Lemma [

M m
Hgf = Z Zfﬁz] * X2k E(7,m)>

m=1 j=1
by definition of fﬁlj. Similar to the proof of Lemma [7 we have
(11)
2
JALETRTES O S DI H K Te BT TR FRpe
R oLy o — 2k E

Notice that >, ., [HE f| converges pointwise since for each s € R, there are at most
M nonzero terms in there. We now proceed to prove that Y, ., |Hf f| € L*(R).
Note that the given condition implies EjeZ Xo2iz < M. Since the support of |[H% f|
is in 2¥E, for any L1, Ly > 0, we have

(12)
2
[C mnyas Y[ i
R <k<L, L Spg<L, 2P BN29E
1
<3 X ([ ympspass [ jmpgia)
—L1<p,q<L, YZ2PEN21E 2p EN29F
- Z / [HE fI? Z X2apds < M Z / |HY, f|?ds
—Li<p<Ly 72"E —L1<q<Ls —Li<p<L,/2'E
—ua Y [imprpas <t Y f[2ds
—L<p<L, 'R L <p<Ly’/2"E
=t (1 vaeds < 00° [ [fPds = M| I,
R Li<p<L, R

Therefore, [, (Y ,cz |H§f|)2ds < M?||f||? by Fatou’s lemma. This also leads to
. 2
(13) p 1}1{11:00/ (> Hpf) ds=o.
e R pb<— K, k>K>

That is, > e |HEf| (hence 3, ., HE f as well) converges in L?(R).
Let age = (f, \/%EWWXE} for convenience. By Lemmall, we have Y-, |are|® =
(HEf, ) < M3 || f - xor 5|2 Tt follows that

3 5

(14) > farel* < M2 | f - xaepl® < ME|£]2
k€T kezZ

We now show that

M m
(15) Hpf— Y HEF =3 fhi Xorp(rm)

keZ kEZ m=1 j=1
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in L?(R) by showing that
(16)
~p~p 1
Y AR R T s vy’
ottt bamo0 IR, cherts - Li<es<Ls 2m =

In light of ([I3)), this is equivalent to

~ o~ 1
ape DT —xp — Hpy f)?ds = 0.
K1,K2,L1,L2—>oo/| Z Kkl 27TXE Ef)|

—K1<k<Ks 7L1§£§L2

Similar to the approach used in obtaining (IZ), we have

~p~, 1
| Z are DM —=x5 — HE f)|?ds
/ —K1<k<K2 —L1<€<L V21

oy 1
(17) < M > /| angkTZ\/—_XE—HEdes.
—K1<k<K> —L1<t<L> 2

Since each HE f converges in L2(R),

1
ape DT ——v i — HE f?ds
/| —L1<¢<L> . \/%XE Ef'

(18) = lim ape DFT — xE|2ds
(15 bt

L3, Ly—o0
(3,4)

where 2(3’4) is the summation over {—L3z < ¢ < —L;, Ly < ¢ < L4}. Let u =

in the above and let gy(u) = \/%e_”" for short; we get

ap DT —— XE dS—/ arege(u) X el du
/R ' r | |Z 2

(3,4)

= Z / 1) arege (W)X B(rmy | *du = Z /|Z akege (W) Xr(B(r,my)| 2du

(3,4) (3,4)

2
M/ 1) arege(w)x-(m)] du_M/ 1Y arege(u)*xr(zydu

R (34 0 (34

27
< M/ | Z apege(uw)|*du = M Z lare|® < M Z |G,M|2).

(3,4) (3,4) I<—L1,>L>

Therefore, (I) is bounded by M7, ;> 1 1, lake|*. However, this goes to
0 as Ly, Ly — oo because of (4.

(ii)=-(ii1). If there exists mo > B such that u(E(7,mg)) > 0, then we will derive
a contradiction the same way as we did in the proof of Lemmal] since Y-, [age|* <
> ke lare|* < Bl f]|?. So u(E(r,m)) =0 for all m > B. Now, if u(E(5,mg)) >0
for some mg > B (this includes the case mg = 00), then there exists a subset F in
E such that 2% F C E for some ¢ > B integers kg1 > kg2 >--->ky=0. To
see this, first let E,, = E(5,mg) N ((—o0, —2") U (2",00)). Notice that pu(E,) — 0
as n — oo, so when n is large enough, u(E,) << p(E(5,mo)). It follows that
1(Up<o 28 Ern) << p(E(6,mg)) when n is large enough, say n > ng for some ng > 0.
Let D=FE (0,m0)\En,. Then a point in D is not 2-dilation equivalent to any point

Yo

IN
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of E,,, by its definition, that is, all its equivalent points are in [—2"°, 2"0]. Consider
Dy = DN ([-2mo—F, —2nmo=k=1) y [2ro—hk=1 gno=k)) "k > 0. Since (D) > 0 and
[—2m0,270) = ;50 ([—270 7K, —2mo—k=1) y [2no—k=1 2no=F)) “there exists a ko > 0
such that u(Dy,) > 0 but u(Dy) = 0 if k < ko. Define Dy, = F;. Now we can
consider the sets 27%Fy, k > 0. Since p(Fy) > 0, p(2*Fy N E) = 0 for any k& > 0
and F; = F;(§,mq) by its choice, there exists k; > 0 so that u(EN27%F) > 0
and u(EN27FF)=0if 0 < k < k. Let F, = EN27% F,. This process can now
be repeated at least [B] times and the last set obtained is the F' we need.

Now define f = yr. By Lemmalll HE f converges for each k. In particular, for
k= 0,—k1,....— kg1, we have HEf = Y07 3" | fk Xoup > f. It then follows
that 3y pe larel” > 35_ (1) Seezlanel® = Zjoq (Hg" 1.£) 2 allfIP >
B||f]|?>. This contradicts the assumption. O

Note. ([T) implies the following decomposition of Hp f:
(19) Hpf=Hgi1)f +Heeaf + .+ Hem) f-

Proof of Theorem @ By () and Theorem [l we have |(Hgf, f)| < M2 | f||2. On
the other hand,

m
~ ~, 1 ~ ~, 1
k ke ke
i’ Tm) — 7D T —— T,m DT —— T,m)s
]E:lfm] X2k E(r,m) ;EZ(JC o XE(r, ) 5 XE(rm)

hence (3270 fi; - Xerm(rmys f) = Yper [(f, DT = Xprm)* = 0. It follows

that <HEfa f> = EkEZ E%zl Z;’;l <f'r]jL] * X2k E(T,m)> f> > Ek€Z<f * X2k E(7,1)s f> =

fR |f|2(zkEZ XQkE(T71))d5 > || f]I? since > kez X2k E(r,1) = 1 by the given condition.
O

Proof of Theorem [3 This is obvious from Theorem [I} O

Proof of Theorem [f} If E = E(d,k) = E(7,1) for some k > 1 and {J,,.,2"E = R
(modulo a null set), then >° ., xon g = k for almost all s € R. So for any f € L*(R),
we have (Hif, f) = (Syen fxom i, £) = Jo [FI? S xoe pids = K[£]1

Now assume that F is a tight frame wavelet set but u(E(7,mg)) > 0 for some
mo > 1. Let ¢ = Xg)(r,m0)s B = XE@ (r,me) @and f1 = g+ h, fo = g — h. Since
Il f1ll = |l f2ll, we must have (Hg(f1), f1) = (He(f2), f2). However, on the other
hand, we have

(He(f1), fr) = (Heg+ Hgh,g+h) = (Hgg, 9) + ({(Hgg, h) + (Hgh, g)) + (Hgh, h).

Similarly, (Hg(f2), f2) = (Hgg,9)— ({(Hgg, h)+{(Hgh, g))+{Hgh,h). Since Hgg =
> okez Ei\n/[:l Z;nzl gfanQkE(T’m) contains the term X g(r,m,) (With & = 0, m = my
and j = 1) and the other terms in it are all nonnegative, we see that (Hgg, h) > 0.
(Hgh, g) > 0 similarly. Thus (Hg(f1), f1) # (Hge(f2), f2), a contradiction. Finally,
assume that p(E(d, k1)) # 0 and u(E£(6, k2)) # 0 for some k1 # ka. Let fi = Xgs,k1)
and fo = Xp(s,k,)- We leave it to our reader to check that Hp(f1) = kif1 and
HE(f2) = k2 f2. This leads to (Hp(f1), f1) = kil f1[|* and (HE(f2), f2) = ka2l f2]*.
Again, we get a contradiction. O

The corollaries of the theorems now follow trivially and the proofs are omitted.



2054 X. DAI, Y. DIAO, AND Q. GU

§5. EXAMPLES AND GENERALIZATIONS
Example 1. Let E = [~7, —37) U [57,7) where n > 1 is an integer. Then E =
E(r,1) and E = E(d,n); hence E is a tight frame wavelet set of frame bound n.

Example 2. Let £ = [-m,—75) U [, 7). By Corollary[3, E is a frame wavelet set

with frame bounds ¢ =1 and b = 2.

Example 3. Let E = [—2F, —Z)U[Z, 7). Then E is a frame wavelet set with lower
bound 1 since E(7,1) = [-7, —%) U [], §) satisfies condition (i) of Theorem 2 and

E(,m) = E(r,m) =0 for m > 2.

Example 4. Let F = [-37, —7) U [m,27). Then E does not satisfy the conditions
in Theorem B since Ey = E(7,1) = [-27,—7) so |5 2"F1 # R. However, one
can prove that F is indeed a frame wavelet set with a positive lower bound and
44/2 an upper bound. The upper bound is easy to see since E(5,m) = E(r,m) = ()
for all m > 2. To see that a positive lower frame bound exists, let f € L?(R) and

define fr = f - X[o,00) and fi = [ X(~o0,0)- Apparently [[f[* = [ fi* + |l /+]* By
(M@ and the proof of Theorem 2] we have

<HEf7f> = <HE1fa f> + <HE2fa f> > Z ”f 'X2kE1||2 = ||fl||27

kEZ

where By = E(7,2) = [-3m, —2m)U[r, 27). If | f1]|?> > | f||? for some small positive
constant a (to be determined later), there is nothing to prove. So we only need
to consider the case ||fi]|? < aff||?, that is, ||f-]|> > (1 — «)||f]|>. Notice that
<HE2fr; fr> = ||fr||2; we get

(Hef.f) = (Hg,f,f)

(He, f1, fi) + (Hp, fr, fr) + (HE, f1, fr) + (Hp, fr, f1)

Lol = (W Hp, £oll - AN+ el 1 e il

11 = 8V2I £l 11 £l

(1 =) =8v2a(1 — )| fI*.

Apparently, if « is small enough, the above is greater than a||f||?. In fact, a can
be chosen to be 0.005.

This example shows that the condition given in Theorem [2 is not a necessary
condition of a frame wavelet set.

(\VAR VARV

Example 5. Let £ = [-7, —%) U [r,27). Then E is not a frame wavelet set. We
leave this to our reader to verify as an exercise. Compare this example with the

above example.

Hint: Let f = x[(—x,—2) — X[r, ) and calculate Hg f.

Not many results are known for general frame wavelet functions. One sufficient
condition for a general frame function is given in [8, chapter 8 (Theorem 3.2)]. It
is easy to see that the condition is not a sufficient condition as one can check that
Examples 3 and 4 above do not satisfy the conditions given there.

We conclude this paper with the following Theorem, which is a generalization of
Theorem 21 The proof is left to our reader. This points to a direction where the
results obtained in this paper may be applied.
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Theorem 5. Let ¢p € L*(R) such that the support E of 12)\ is of finite measure.
Then v is a general frame function if (i) E satisfies the conditions in Theorem[3,

(ii) |1Z| is bounded above and (iii) |1Z| is bounded below by a positive constant on
E(r,1).
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