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ABSTRACT. We provide a short proof for a semistability criterion which is
crucial to the construction of master spaces which has drawn interest in recent
research in Geometric Invariant Theory.

Among the main objects of study of Geometric Invariant Theory are represen-
tations of reductive algebraic groups. Given a reductive algebraic group G, defined
over a field k, a finite dimensional k-vector space W, and a rational representation
p: G — GL(W), one obtains an action of G on P(W), the space of hyperplanes in
W, and a representation of G on the algebra R := Sym W. By the Hilbert-Nagata
theorem, the algebra R® of G-invariant elements in R is a finitely generated graded
subalgebra of R. Therefore, P(W)//G := Proj R® is a projective variety, and there
is a rational map 7: P(W) --» P(W)//G. This is the GIT procedure of forming a
quotient. A closed point [w] € P(W) is called semistable, if 7 is defined in [w], i.e.,
if there is a non-constant homogeneous element in R“ not vanishing in [w]. The set
P(W)*s of semistable points is open, and a point [w] € P(W) is called polystable, if
[w] is semistable and the G-orbit of [w] is closed in P(1W)*S. The map 7 identifies
the closed points of P(W)//G with the set of G-orbits of polystable points.

A central task of GIT is now to identify the semistable and polystable points
in P(W). This is usually achieved by the Hilbert-Mumford criterion [I]. However,
if p is the direct sum of other representations, this might become too difficult.
In this note, we will provide a short and elementary proof of a theorem from [2],
dealing with this situation. More precisely, let k and G be as before, and W7,...,W;
finite dimensional k-vector spaces. Suppose we are given representations p;: G —
GL(W;),i=1,..,8, with W =W, ®---® W, and p = p1 & --- ® ps. For any
L= (t1yeyte) With 0 <t < '8, 01,0yt € {1,...,8}, and 11 < -+ < 14, the p;’s yield
an action o, of G on P, :=P(W,,) x --- x P(W,,), and, for any sequence of positive
integers ki, ..., k¢, a linearization of o, in the very ample line bundle O(kq, ..., k¢).
The computation of the semistable and polystable points in P(WW) can be reduced
to the computation of the semistable and polystable points in the P,’s by means of
the following theorem.

Theorem. Let w = [wy, ..., ws] be a point in P(W), with w; denoting its component
in WY, i=1,...,s. Then w is semistable (polystable), if and only if there are an
index t = (L1,...,4t) such that j € {Ll,...,bt} implies (is equivalent to) w; # 0
and positive integers ki, ..., ki such that the point ([w,,], ..., [w,,]) in P, is semistable

(polystable) w.r.t. the given linearization of o, in Ok, ..., kt).
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Remark. As one easily checks, for stable points only the “if”-direction remains true.
The theorem remains useful even for the identification of stable points, using their
characterisation as polystable points with finite stabilizer.

In [2], this theorem was proved for s = 2 using properties of C*-actions and
actions of products of groups. This approach actually not only yields the above
theorem but also has applications to chains of GIT-flips. For the construction of
master spaces (see below), this extra information is not necessary and it seems
reasonable to have a much easier proof of the result.

Example (The coupling principle of Okonek and Teleman [3]). The setup is as
follows: We are given rational representations pg: G — GL(Wp) and poo: G —
GL(Wy) as well as G-invariant closed subschemes Yy C P(Wy) and Yoo C P(W).
A coupling of the GIT problem (Yy, po) to the GIT problem (Yoo, poo) is & G-invariant
closed subscheme Y C P(Wy @ W) which is also invariant under the C*-action
given by z- [wo, Weo| 1= [Wo, 2Ws], such that YNP(Wp) = Yy and Y NP(Wx) = Yo
The space M :=Y//G is called the master space of the coupling. In case Yy = Yoo,
this construction is due to Thaddeus [4]. The space M can now be exploited to
gather information on My := Yy /G and M := Y //G. The full scope of this
method and sample applications are discussed in [3]. Our theorem now plays a
central role in the description of the scheme M.

Example (Moduli spaces of semistable oriented pairs [2]). Oriented pairs have
their origins in non-abelian Seiberg-Witten theory. The moduli space of semistable
oriented pairs on surfaces and the above-mentioned coupling principle are key ingre-
dients in the program of Okonek and Teleman for relating Donaldson and Seiberg-
Witten invariants. The same circle of ideas can be applied to oriented pairs on
curves, e.g., for another proof of the Verlinde formula [3].

As an illustration, fix a smooth projective curve C' and a line bundle L on C.
An L-oriented pair is then a triple (E, €, ), consisting of a rank two vector bundle
E on C, an isomorphism ¢: det E — L, and a global section ¢ of E. If ¢ is non-
trivial, there is a well defined effective divisor D on C such that ¢ embeds Oc(D)
as a subbundle of E. The L-oriented pair (E, ¢, ) is now semistable, if either E' is a
semistable vector bundle or ¢ # 0 and deg D < deg E/2. The second condition can
be easily rephrased in terms of the parameter dependent semistability concept for
Bradlow pairs [2]. The task is to construct the moduli space of semistable L-oriented
pairs. Using a Gieseker type construction, one of the main steps is to identify
the SL(V)-semistable points in P(W; & Wy) where Wy := Hom(A?V,U;)Y and
Wy := Hom(V,Us)V, V, Uy, and Us being finite dimensional k-vector spaces. The
Hilbert-Mumford criterion is not helpful here, mainly because one cannot reduce
the problem to certain basic one-parameter subgroups as in the construction of
the moduli space of vector bundles or Bradlow pairs. By the theorem, we have
to compute the semistable points in P(W;), P(W2), and P(W;) x P(W3) w.r.t.
the linearization in O(kq,ke) for all k1,ke > 0. In all these cases, one can safely
apply the Hilbert-Mumford criterion. The outcome is that the semistable points
correspond to semistable L-oriented pairs, using the formulation of semistability in
terms of the parameter dependent semistability concept for Bradlow pairs.
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PROOF OF THE THEOREM

We first prove the semistable part. By definition, the point w is semistable if
and only if, for some k > 0, there is an invariant section in H°(O(k)) = S¥W
which does not vanish in w. Now, SFW = @lir___JrkS:k SFW, @ - ® Sk Wy,
and the representation of G on S*W respects this decomposition, i.e., (S¥W)¢ =
@kl+,,,+kszk(3k1W1 ® - ® SF W), Therefore, w is semistable if and only if we
find a section in some (S*1 W, @---® S*+W,,)¢ which does not vanish in w. This
is precisely the assertion of the theorem. Note that we have used only the very
definition of semistability. The polystable part will follow easily by means of an
induction from the following

Claim. Let w' := ([w,,, w,,], [wy], ..., [w,]) be a point in P(W,, @ W,,) x P, )
Then w' is semistable (polystable) w.r.t. the given linearization in O(k, ks, ..., kt), if
and only if either ([w,,], [w.,], ..., [w,,]) is semistable (polystable) in P(,, . ,,) w.r.t.
the linearization in O(k, ks, ...., k) for either ¢« = 1 (and w,, = 0) or i = 2 (and
w,, = 0), or there are positive natural numbers n, k1, and ko, such that k1 +ko = nk
and the point ([w,, ], [w,,], [w], ..., [w,,]) is semistable (polystable) in P(,, ., .o .1
w.r.t. the linearization in O(ky, k2, nks, ..., nky).

The semistable part is proved as before. First, we suppose that w’ is polystable.
With the Hilbert-Mumford criterion [1], the claim can be rephrased as follows:
There exist non-negative rational numbers k1 and k2, not both zero, with k1 + ko =
k such that for every one-parameter subgroup A of G, we have

(1) Hlﬂ([wbl]vA) +"£2N([wt2]a/\) +ijtu([wtj]7)‘) > 0
=3

and the image of w’ in the respective P, is a fixed point for the action of every
one-parameter subgroup A for which equality occurs in (Il). By the semistable part
of the claim, we already know that we can find k; and &2 such that (1) holds for
every one-parameter subgroup A. There are now two possibilities. The first one
is that there are two distinct sets (x4, k%), i = 1,2, for which () holds. But then
(K3, k3) with /{f- = (k] + H?)/Q will be a third one, /{f- > 0,5 = 1,2, and it is
easy to see that, if for (k3, k3) equality in (@) occurs, then p([w,,], ) = p([w.,], A).
1!

Let w” := ([w),w,], [w),...,w]) = lim, .o A(2) -w’. The condition u(A, [w,,]) =

p(A, [w,,]) implies that both w! and w;, are non-zero. Therefore,
Jim A2) - ([wi], [we], (e, owe]) = (fwi], [wip], [, wli]).

Since this point is again semistable, the “semistable part” of the proposition implies
that w” is also semistable. This means w” = w’, because w’ is assumed to be
polystable, and we are done. The second possibility is that there is exactly one
such pair (x1,k2), but this implies that, for all v > 0, all invariant sections of
O(k, ks, ..., k¢)®” not vanishing in w’ must lie in S*"W,, ® SY*2W,, @ S**»W,, ®
- ® SYFW,,, and this obviously implies the claim.

The converse follows easily from the fact that for non-negative rational numbers
k1 and kg with K1 + k2 = k and a one-parameter subgroup A one has p(w’, \) >

ruplfwi, ], A) + wzp(we], N) + 325 s kia(w,],A). O
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