
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 129, Number 7, Pages 2141–2156
S 0002-9939(01)05823-3
Article electronically published on February 23, 2001

KNOTS OF GENUS ONE
OR ON THE NUMBER OF ALTERNATING

KNOTS OF GIVEN GENUS

A. STOIMENOW

(Communicated by Ronald A. Fintushel)

Abstract. We prove that any non-hyperbolic genus one knot except the tre-
foil does not have a minimal canonical Seifert surface and that there are only
polynomially many in the crossing number positive knots of given genus or
given unknotting number.

1. Introduction

The motivation for the present paper came out of considerations of Gauß di-
agrams recently introduced by Polyak and Viro [23] and Fiedler [12] and their
applications to positive knots [29].

For the definition of a positive crossing, positive knot, Gauß diagram, linked pair
p, q of crossings (denoted by p ∩ q) see [29].

Among others, the Polyak-Viro-Fiedler formulas gave a new elegant proof that
any positive diagram of the unknot has only reducible crossings. A “classical”
argument rewritten in terms of Gauß diagrams is as follows: Let D be such a
diagram. Then the Seifert algorithm must give a disc on D (see [9, 29]). Hence
n(D) = c(D)+1, where c(D) is the number of crossings of D and n(D) the number
of its Seifert circles. Therefore, smoothing out each crossing in D must augment the
number of components. If there were a linked pair in D (that is, a pair of crossings,
such that smoothing them both out according to the usual skein rule, we obtain
again a knot rather than a three component link diagram) we could choose it to
be smoothed out at the beginning (since the result of smoothing out all crossings
in D obviously is independent of the order of smoothings) and smoothing out the
second crossing in the linked pair would reduce the number of components. Hence
D has no linked pair, and so all crossings in D are reducible.

2. Knot diagrams with canonical Seifert surfaces of genus one

The starting point of our discussion here is in how far does the picture change
when we consider n(D) = c(D)−1, that is, exactly one smoothing out of a crossing
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2142 A. STOIMENOW

reduces the number of components and the genus of the canonical Seifert surface
is one. Before we formulate the answer, let us make some definitions which will be
of major importance in the following.

Definition 2.1. A collection of chords a1, . . . , an in a Gauß diagram is called neigh-
bored, if no two of them intersect and any other chord intersects either all or none
of them.

Any collection of neighbored chords has two outer chords (i.e., ones with respect
to which the rest of the collection lies on one side) and the segments of the solid
line belonging to the collection are the segments between the basepoints of the two
outer chords containing basepoints of chords in the collection only.

We need some standard definitions, which we formulate here in our favorable
Gauß diagram setting.

Definition 2.2. A knot diagram is reduced or irreducible if its Gauß diagram has
no isolated chord; otherwise it is called reducible. A crossing corresponding to an
isolated chord in a reducible knot diagram is called reducible. A diagram is called
connected if the intersection graph of its Gauß diagram is so.

Definition 2.3. A knot diagram is twist reduced (or t2 irreducible) if it is reduced
and there is no sequence of flypes

(1)

transforming it into a diagram on which a reducing t̄2 move

can be applied (the mirrored picture we understand as well as such a move). The
reverse of this move we will just call a t̄2 move.

The t̄2 twist sequence or series of a diagram we will call the series of dia-
grams obtainable by applying t̄2 moves at D’s crossings. Such a sequence can
be parametrized by a tuple of integers corresponding to D’s crossings (in some
fixed order) indicating how many t̄2 moves are applied at any crossing.

The genus of a diagram we will call the genus of the surface, obtained by applying
the Seifert algorithm to this diagram. Such a surface we will call canonical for the
diagram.

Theorem 2.1. Let D be a reduced diagram on which the Seifert algorithm gives
a surface of genus one. Then D is a rational knot diagram corresponding to the
Conway notation [16] C(p, q) with p, q ∈ Z non-zero and even, or a (p, q, r)-pretzel
knot diagram P (p, q, r) with p, q, r odd. That is, genus one diagrams consist of the
series of the (standard) trefoil and figure eight knot diagrams.
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This fact was also observed by Lee Rudolph [26, p. 4 top] without proof. Here we
write one. Our approach will turn out more useful later, when we consider higher
genera.

Proof. Let D be such a diagram. First, D is connected. Then D has the following
property: whenever a linked pair of crossings is smoothed out in D, the resulting
diagram has only reducible crossings (that is, no linked pairs). Now in the smoothed
out version the segments are run through in the following order:

One convinces oneself that then in D subdiagrams of the following kind do not
occur:

To do so, choose one linked pair, remove it, swapping 2 of the opposite segments
into which the chords of the linked pair separate the solid line and observe that the
two remaining chords are linked.

Now fix some chord d in D. The exclusion of (b) and (c) shows that the following
holds:

a ∩ c, a ∩ d ⇒ c ∩ d ∨ ∀c′ ∩ d : c ∩ c′ .

In other words this means: for each two non-intersecting chords c and d intersecting
a chord a, it holds that any other chord c′ intersects either both or none of them.

Now make the following procedure: color d blue and all a with a∩d red. Assume
now that any blue colored chord is intersecting any red colored chord and that
some chord is not yet colored. Then (by connectedness of D) take one (call it b)
intersecting some (w.l.o.g.) blue colored chord c. As c intersects some (in fact, any)
red colored chord e, either (i) b intersects all chords intersecting e, in particular all
blue chords, and then color b red; or (ii) b ∩ e. If b intersects all colored chords
intersecting c, then color b blue. Else b does not intersect some colored chord f
with f ∩ c.

Then f ∩ e (else (c)) and so ∀f ′ : f ′ ∩ f ⇒ f ′ ∩ b. Then give b the color of f .
Then one more chord is colored and still any blue colored chord intersects any red
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colored chord. At the end this procedure partitions all chords of D into red and
blue and D looks like this:

Now look at each partition separately. By exclusion of (a) and (b) and the fact that
each blue chord is intersected by some fixed red chord, whenever two blue chords
intersect, any other blue chord intersects exactly one of them. Then the partition
looks like:

To see this, (re)color the blue chords black and white such that any chord intersect-
ing a black (white) chord is colored white (black). Then by the above properties
two chords intersect exactly if they have different color.

Now assume both partitions are of type I. Then by the even valence principle
(each chord intersects an even number of chords) both have even number p, q of
chords and D is the diagram C(p, q) with p, q even. Not both partitions can be of
type II because of (a). Hence the remaining case is one partition of type I and one
of type II. Then D looks like:

By even valence p+ q, p+ r and q + r must be even, so either p, q, r even or p, q, r
odd. It is easily seen that for p, q, r even D is not realizable (or it can be formally
checked using the conditions in [10]) hence p, q, r are odd and D is the pretzel
diagram P (p, q, r).

This theorem now has some consequences. Now, any (p, q, r)-pretzel knot is
alternating for p, q, r > 0 or by [1, exercise 5.32, p. 149] alternating or almost
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alternating for p, q > 0, r < 0. This covers all cases up to obversion (that is, taking
the mirror image), so we obtain

Corollary 2.1. Any genus one knot, that is neither alternating nor almost alter-
nating, has no minimal canonical Seifert surface.

Using that the only genus one torus knot is the trefoil and that any non-
hyperbolic knot is composite (so of genus at least two), satellite (so by [19] non-
alternating and by [2] non-almost alternating) or a torus knot, we obtain the state-
ment of the abstract.

Corollary 2.2. Any non-hyperbolic genus one knot except the trefoil does not have
a minimal canonical Seifert surface.

A series of such knots are Whitehead doubles of (non-trivial) knots, and so we
see that any Whitehead double of a (non-trivial) knot K does not have a minimal
canonical Seifert surface. This was known for lonely K (that is, K is not a satellite
itself) by [36] (see the proof of theorem 7 of [9]). Morton [21] gave an independent
argument for showing the non-existence of minimal canonical Seifert surfaces using
the HOMFLY polynomial and giving the example of a Whitehead double of the
trefoil.

Corollary 2.3. Let K be an alternating genus one knot. Then K = P (p, q, r) with
p, q, r > 0 odd, or K = C(p, q) with p, q > 0 even (or their obverse).

Proof. Take an alternating diagram of K. Then the Seifert algorithm must give a
genus one surface on it [13, 9] and now apply Theorem 2.1.

Corollary 2.4. Let K be an positive genus one knot. Then K = P (p, q, r) with
p, q, r > 0 odd.

Proof. Take a positive diagram of K and again use the minimality of the canonical
Seifert surface. Then by Theorem 2.1 D is either C(p,−q) with p, q > 0 even or
P (p, q, r) with p, q, r > 0 odd. However, the former case in contained in the latter,
as C(p,−q) = P (p− 1, 1, q − 1) (see the continued fractions [1, §2.3]).

Now we come to our result on unknotting numbers.

Corollary 2.5. Let K be a positive unknotting number one knot. Then K is a
twist knot (i.e., a rational knot with Conway notation C(2, n) or C(n, 2), n ∈ N).

Proof. Let K be such a knot. Then by Corollary 1 of [26] a positive unknotting
number one knot has also genus one and then by Corollary 2.4 K is a (p, q, r)-
pretzel knot with p, q, r odd. Now, by Corollary 2 of [17], a (p, q, r)-pretzel knot
with p, q, r odd has unknotting number 1 if and only if {1, 1}, {−1,−1}, {−3, 1},
or {−1, 3} ⊂ {p, q, r}, in which case the knot is a twist knot.

Remark 2.1. Only odd crossing number twist knots occur. It can be shown that
even crossing number twist knots are not positive. For example, thay have negative
Casson invariant (which can be most easily seen from its Polyak-Viro formula [23])
and negative minimal degree of the Jones polynomial (it is −2) contradicting the
obstructions to positivity of [9] and [31]. Moreover, even crossing number twist
knots have zero signature, contradicting the property of [8, corollary 3.4, p. 497].

Remark 2.2. J. Przytycki informed me of an early draft by himself and Taniyama
[25], where he obtained the same and some similar results.
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Corollary 2.6. Any positive genus one knot has at most two positive (unoriented)
diagrams (in S2), at most one of the kind C(p,−q), p, q > 0 even, and at most one
of the kind P (p, q, r), p, q, r > 0 odd.

Proof. It follows from Theorem 2.1 that all diagrams C(p,−q) depict distinct ra-
tional knots, as the expression C(a1, . . . , an) with all ai even is unique for any
rational knot. In the pretzel case note that the diagrams P (p, q, r) with p, q, r > 0
odd are alternating and do not admit a flype [20] (modulo permuting p, q and r,
which however is also realized by orientation reversal and isotopies of the diagram
in S2).

Example 2.1. C(4,−4) and P (3, 1, 3) are the only positive diagrams of the knot
74.

Example 2.2. Any (p, q, r)-pretzel knot with p, q, r > 1 odd is not rational (e.g.,
again by the above flyping argument, as rational knots are alternating) and hence
its (p, q, r)-pretzel diagram is its unique positive diagram.

Conjecture 2.1. These are the only positive knots with only one positive diagram.

Theorem 2.1 allows us to reproduce in a much easier way [32, corollary 3.1]:

Corollary 2.7. Any connected almost positive unknot diagram is a one crossing
diagram or an unknotted twist knot diagram.

Proof. By the inequality of of Bennequin-Vogel (see [29]) the canonical Seifert sur-
face of such a diagram must have genus at most one. The genus zero case is the
one crossing diagram, so look at the genus one case. Switching a crossing in a pos-
itive canonical genus one diagram and possibly annihilating it by a Reidemeister
II move with another one gives a diagram of (i) C(p,−q) with p, q ≥ 0 even and
not p = q = 0 or (ii) P (p, q, r) with p, q, r odd, q, r > 0 and p ≥ −1. Case (i)
with pq = 0 comes (before the Reidemeister move) from a diagram of the desired
type, and for pq > 0 the diagram is knotted (e.g., as positive, connected and of
more than one crossing). A direct calculation of v3 of [29] shows that case (ii) is a
knotted diagram unless p = −1 ∧ (q = 1 ∨ r = 1) as desired.

Finally, we repeat some results of Rudolph [26] slightly simplifying their proofs
by not involving counts of Seifert circles (his notations O≥, O<).

Theorem 2.2. Let D be a k-almost positive diagram of an achiral or slice knot.
Then the canonical Seifert surface of such a diagram has genus at most k.

Sketch of the proof. For slice use the Kronheimer-Mrowka-Menasco-Bennequin in-
equality with the slice genus instead of the Seifert genus (called in [26] “slice Ben-
nequin inequality (sBi)”). For achiral knots reduce it to the slice case by Lee
Rudolph’s trick (consider D#D).

Corollary 2.8. Any positive non-trivial knot is non-slice.

Proof. See the arguments in the introduction and combine them with Theorem
2.2.
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Corollary 2.9. Any non-trivial positive and almost positive knot is chiral and non-
slice.

Proof. Let K be an achiral or slice non-trivial positive or almost positive knot.
Then using Theorem 2.2 and the arguments in the proof of Corollary 2.7 it has
either a connected positive diagram of > 1 crossing, contradicting Corollary 2.8 or
a diagram P (p,−1, q) = C(p,−1, q) with p, q > 1 odd. But such a knot is rational
and has a positive rational diagram; hence it is again by Corollary 2.8 chiral and
non-slice, contradicting the assumption.

Corollaries 2.8 and 2.9 are obtained also in [8, 25, 34], always using the signature.

3. Higher genera

Theorem 3.1. There exist numbers cn, n ∈ N, with cn = O(8n) such that any
twist reduced diagram of Seifert genus n has at most cn crossings. Therefore, any
knot diagram of Seifert genus n lies in the t̄2 twist sequence of some diagram of at
most cn crossings.

To explain in the following what happens we need some definitions. We consider
first the flypes in more detail.

Definition 3.1. The flype in (1) is called the flype at crossing p, where p is the
distinguished crossing in both diagrams not belonging to the tangles P and Q (and
their transforms). If a diagram admits a flype at crossing p, then we say that p
admits a flype.

There is an evident bijection between the crossings of the diagram before and
after the flype, so that we can we can trace a crossing in a sequence of flypes and
identify it with its image in the transformed diagram when convenient.

When considering orientation, according to the orientation near p we distinguish
two versions of flypes we call types A and B, whose difference will be very important
in the following. The diagram on the right hand-side of (1) for these two versions
of the flype is given on Figure 1. Note that any crossing admits a flype of at most
one type.

Figure 1. A flype of type A and B

Definition 3.2. We call two crossings p and q of a knot diagram linked, no-
tationally p ∩ q, if the crossing strands are passed in cyclic order pqpq along
the solid line, and unlinked if the cyclic order is ppqq. We call two crossings p
and q equivalent if they are linked with the same set of other chords, that is if
∀c 6= a, b : c ∩ a ⇐⇒ c ∩ b. We call p and q ∼-equivalent p ∼ q if they are
equivalent and unlinked and ∼∗ -equivalent p ∼∗ q if they are equivalent and linked.
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It is an exercise to check that ∼-equivalence and ∼∗ -equivalence are indeed equiv-
alence relations and that two crossings are ∼- (resp. ∼∗ -) equivalent if and only if
after a sequence of type B (resp. type A) flypes they can be made to form a reverse
(resp. parallel) clasp.

Proof of Theorem 3.1. We proved that we can set c1 := 4. Now we use induction
and consider a twist reduced diagram D of Seifert genus n + 1. Fix a linked pair
(p, q) in D. Build D′ and D′′ as follows:

Then D and D′′ are realizable (i.e., correspond to a knot diagram), but D′ may
not be so. Moreover, D′′ is of Seifert genus n.

Assume D′′ has reducible chords. Now, one can see that the linking status of
two chords in D′′ is different from this in D iff (a) one of the two chords is linked
with both p and q and the other one is linked with either p or q in D or (b) the one
chord is linked with p, but not q, and the other chord is linked with q, but not p.
Hence there are three kinds of reducible chords in D′′:

1) linked exactly with both p and q and with exactly those chords linked with
either p or q in D,

2) linked with p, but not q, and exactly those chords linked with q in D,
3) linked with q, but not p, and exactly those chords linked with p in D.

If one of the first group has more than 2 elements or one of the other two has more
than one element, then by type B flypes looking on Gauß diagrams like

you can get these ≥ 3 chords (resp. 2 chords together with p or q) neighbored and
D becomes reducible. Hence D′′ has at most 4 reducible chords.

Now assume, removing these reducible chords from D′′ and calling the result
D′′′, D′′′ has more than 8cn chords. Then by induction it, and also D′′, has at least
9 ∼-equivalent chords obtained by t̄2 twists and possible subsequent flypes. Now,
putting the 4 basepoints of p and q on the solid line of D′′ will still leave a collection
of 3 ∼-equivalent chords a, b, and c in D′′ that have in D the same linking status
with p and q. But then by the above remarks they are linked with the same sets of
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(other) chords in D as well, because the linking status in D is determined by the
linking status in D′′and the position w.r.t. the basepoints of p and q in D, which
for all of a, b and c is the same. Hence this collection will remain ∼-equivalent by
exchanging segments I and III and reinstalling p and q, and ∼-equivalent chords
can be made to form a reverse clasp by flypes, so D is twist reducible after possible
flypes, a contradiction.

Hence D′′′ has at most 8cn chords, D′′ has at most 8cn + 4 chords and D has at
most cn+1 ≤ 8cn + 6 chords.

The proof together with c1 = 4 shows that we have cn ≤ 34·8n−1−6
7 . This bound

is clearly quite unsharp and very likely it can be improved.

Remark 3.1. The description of how the linking status changes by smoothing a
linked pair and the fact that a diagram is of genus 0 iff it has no linked pair induc-
tively show that the genus of a diagram depends only on the intersection graph of
its Gauß diagram. A special case of a conjecture of Chmutov and Duzhin [7, §4.2.3]
(slightly reformulated for realizable Gauß diagrams and without considering rela-
tions) asserts that this intersection graph determines the diagram up to (iterated)
mutations, so our observation of invariance of the diagram genus can be considered
as some small evidence of this conjecture.

Corollary 3.1. As a function of their crossing number c(K), there are only poly-
nomially many alternating knots K of given genus g(K) and positive knots of given
genus or given unknotting number u(K). That is,

# {K : K positive knot, c(K) = n, g(K) = g } = On(npg )

(and the same for u resp. alternating knots) for some number pg ∈ N, where On
denotes the asymptotic behaviour as n→∞.

Proof. The statements for the genus of an alternating knot follow from the fact
that alternating and positive knots have minimal (genus) canonical Seifert surfaces
and that flypes preserve the knot type.

For K alternating use that an alternating diagram of K has minimal crossing
number by [15, 22, 33]. For K positive use that if K has a positive diagram of c
crossings, then by [29, theorem 6.1] and [24, theorem 2.2.E], c(K) ≥

√
2c.

For the statement about the unknotting number, use the inequality in corollary 1
of [26] implying that the genus of a positive knot is at most equal to its unknotting
number (see also [29]).

The proof of the Tait flyping conjecture [20] allows a more specific statement
about the alternating case. It is most elegantly expressed using the following:

Definition 3.3. A sequence {an}∞n=1 is called periodically polynomial in n with pe-
riod d ∈ N if there are polynomials P0, . . . , Pd−1 ∈ Q[n], such that an = Pnmodd(n),
and periodically polynomial if it is periodically polynomial with period d for some
d ∈ N.

Corollary 3.2. The number of alternating knots of genus g and n crossings (as
well as the number of such knots up to in- and/or obversion and the number of in-
vertible and/or achiral ones among them) is periodically polynomial in n for almost
all n (that is, with finitely many exceptional values of n).
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This fact follows from standard combinatorial arguments, but maybe it is desir-
able to explain them in more detail.

Sketch of the proof. Parametrize as above a t̄2 twist sequence of diagrams of genus g
by the number of twists at each crossing of the corresponding t̄2 irreducible diagram
D.

We start by the observation that if a crossing p of a non-trivial (that is, of more
than one element) ∼-equivalence class does not admit a type A flype, and if it
admits a type B flype, then it does so after any number of t̄2 twists at it.

Now, for any t̄2 irreducible diagram D of genus g let l = lD be the number of
trivial ∼-equivalence classes of its crossings. Then the braiding sequence generated
by D we decompose into 2l subsequences, sorting a diagram D′ in D’s sequence
according to whether or not each of the l ∼-equivalence classes in D′ is trivial or
not.

The previous observation now says that if a diagram in one of these subsequences
B occurs in another subsequence B′, then B and B′ contain diagrams of the same
knots. Therefore, we can discard all duplicated subsequences and are left with
caring about duplications in any subsequence itself.

Thus, we can enumerate the number of knots in each t̄2 twist subsequence sep-
arately. Now, by flyping the diagram so ∼-equivalent chords become neighbored,
any such subsequence can be represented by a Gauß diagram with thickened chords,
depicting non-trivial collections of neighbored chords.

Ordering in a fixed manner these thickened chords, flype transformations of the
diagram descend to permutations of the thickened chords therein. Then we count
compositions1 of the crossing number of fixed length modulo the action of a sub-
group of the symmetric group. That is, if the c crossings decompose into l trivial,
m non-trivial odd size and n even size ∼-equivalence classes, we consider

(2) M :=
{

(a1, . . . , am, b1, . . . , bn) ∈ Nm+n :∑
ai +

∑
bj = c− l, ai ≥ 3 odd, bi even }

/
G ,

with G being a subgroup of Sm × Sn. Allowing in- and obversion, the picture
remains the same, just the group G generally becomes larger.

By Burnside’s lemma [14, lemma 14.3 on p. 1058], |M| is the arithmetic mean of
the cardinalities of the fix point sets of the action of each element of G, which are
tuples as in (2) with additional conditions of the kind ai = aj with 1 ≤ i < j ≤ m
and/or bi = bj with 1 ≤ i < j ≤ n for specific pairs (i, j). That is, this reduces
to enumerating compositions with specified parts equal. But such counts admit
straightforward recursive formulae, from which their periodical polynomiality is
evident.

Arguing this way for each series separately gives the assertion.

1Representations of a natural number as the sum of natural numbers whose order is relevant
and not necessarily de- or increasing.
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The origin of the exceptional cases in the beginning is the fact that each sequence
starts giving a contribution only from a certain crossing number on. This way we
see that the number of exceptions may a priori be larger than cg, but it certainly
will not be larger than

max
D

c(D) + 2c′(D) ,

where D runs over all t̄2 irreducible diagrams of genus g and c′(D) the number of
crossings of D admitting a type A flype (that is, a flype which is destroyed by a t̄2
move near this crossing).

Remark 3.2. The proof suggests that the period will generally not be much smaller
than the least common multiple of the lengths of the orbits of the crossings in the
t̄2 irreducible diagrams of genus g under their symmetries, and as the number of
diagrams is already expected to grow rapidly with g, so will the number of symme-
tries, and hence the period. Therefore, the phenomenon of the above corollary will
be hardly empirically visible even for small g.

Alternatively, a periodically polynomial sequence (an) can be defined by the
property, that its generating function

f(x) =
∞∑
i=0

aix
i

is a rational function f(x) = P (x)

Q(x)
, with P,Q ∈ Z[x] and the zeros of Q being all

(complex) roots of unity. The degree of (an), that is, the maximal degree of all
Pi in Definition 3.3, is then one less than the highest multiplicity of such a root
of unity as zero of Q, and the period of (an) is the least common order of all such
roots. Although we cannot give any nice property of the period, as for the degree
dg, we note that Corollary 3.2 implies the following identity, where An,g is the set
of alternating genus g knots of n crossings:

dg = min

{
i ∈ N : lim sup

n→∞

∣∣An,g ∣∣
ni

= 0

}
.(3)

This identity can be taken as a self-contained definition of dg, but it reveals little
about its nature. Thus we can set pg = dg in Corollary 3.1 for alternating knots
and pg = 2dg for positive knots.

Remark 3.3. It is also worth mentioning that by the same (slice) Bennequin in-
equality arguments as in Corollary 1 of [26] Corollary 3.1 extends (for both genus
and unknotting number) to k-almost positive knots for any given k, if we replace the
crossing number of the knot by the minimal crossing number of a k-almost positive
diagram of it (for the definition and properties of k-almost positive knots, I pro-
pose to the reader to consult [25, 31]). Unfortunately, yet, besides the positive case
([29, cor. 6.2]), there is no inequality relation (in the non-trivial direction) avail-
able between both crossing numbers. If such inequality exists, already considering
Whitehead doubles (whose number grows exponentially in the crossing number; see
remarks after Question 5.1), one sees that generically a knot is not k-almost pos-
itive for any finite choice of values of k, and hence in particular k-almost positive
knots exist for infinitely many k. This fact was established in [31] using the Jones
polynomial. Note, contrarily, that it is not yet clear whether for all, almost all or
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for which k there are k-almost positive knots. Although both arguments, the one
here and that of [31], are in principle constructive, they will be very hard to apply
for high values of k, unless more structure and regularity is exhibited to avoid the
resulting calculational explosion.

Let d(K) denote the bridge number of K and g̃(K) the weak genus of K, i.e.,
the minimal genus of all its diagrams.

Our next corollary addresses Vassiliev invariants, and more precisely the ques-
tion: how well are Vassiliev invariants determined by their values on knots of given
genus? Clearly there are Vassiliev invariants vanishing on knots of bounded genus –
the Conway (polynomial) Vassiliev invariants. But already asking for primitive Vas-
siliev invariants with this property seems non-trivial (see Conjecture 5.1). Here we
obtain the answer for the weak genus.

Corollary 3.3. Fix g ∈ N. Then for n → ∞ there are more than polynomially
many (in n) linearly independent primitive Vassiliev invariants of degree n vanish-
ing on knots of weak genus at most g.

Proof. By Corollary 3.1 and the braiding polynomial arguments of [28] the space
of Vassiliev invariants of degree n restricted to knots of weak genus at most g is
polynomially bounded (above) in n. Then the assertion follows from the result of
[6].

Contrast this with

Theorem 3.2 (see [30]). Let S ⊂ N+ be infinite. Then if some Vassiliev invariant
v vanishes on all alternating knots K with g(K) = g̃(K) ∈ S, then v ≡ 0.

Contrary to this we ask

Question 3.1. Is a Vassiliev invariant v of degree at most n, such that v(K) = 0
if K has a canonical Seifert surface of genus at most n, zero?

The reason for this question is the desire to prove an exponential upper bound
in n for the number of Vassiliev invariants of degree at most n, which would follow
from [28], if the answer to Question 3.1 is positive.

Compare this with Conjecture 5.1 and the following two theorems.

Theorem 3.3 (see [27, 28]). Any Vassiliev invariant vanishing on alternating knots
is zero.

Theorem 3.4 (see [28]). Any Vassiliev invariant vanishing on positive knots is
zero.

Then we have

Corollary 3.4. The bridge number d(K) is bounded for all knots K by a function
of g̃(K). This means there is a function f : N→ N such that d(K) ≤ f(g̃(K)) for
any knot K.

Proof. This is clear from the previous remarks, as you can isotope in the plane any
diagram near a crossing so as t̄2 moves at that crossing not to create additional
local extrema.

Question 3.2. Is there a function f0 : N→ N such that d(K) ≤ f0(g(K)) for any
knot K?
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Remark 3.4. Promising candidates for a sequence of knots of fixed g but unbounded
d are easily found, for example Whitehead doubles of knots of unboundedly growing
bridge number, so the main difficulty in answering this question seems the lack of
nice lower bounds for d(K).

The last consequence generalizes a result of [29] and answers a question posed
therein.

Corollary 3.5. There are only finitely many alternating (in fact, homogeneous [9])
knots with the same Alexander polynomial.

Proof. We use the terminology of [9, §1]. Assume there is an infinite family of
such knots. Then they all have the same weak genus [9, corollary 4.1] and hence
by Theorem 3.1 there is an infinite family F of such knots in the same t̄2 twist
sequence of some diagram D. A t̄2 twist corresponds to inserting a vertex p on an
edge e of the Seifert graph of D. W.l.o.g. e is not an isthmus (else D is composite
and the t̄2 twist corresponds to twisting one of the components, which preserves the
knot type); hence p is not a cut vertex and so lies on some circle in its block of the
Seifert graph. Therefore, F contains diagrams with the maximal circle length of the
Seifert graph blocks arbitrarily large, which by the proof of theorem 5 of [9] renders
the top degree coefficient of ∆ arbitrarily large, contradicting the assumption.

4. A remark on links

So far we developed the theory only for knots. It is worth saying some words on
links.

It turns out that the picture is basically the same here. Let g(L) be the genus of
L and c(L) the number of components of L. Call ĝ(L) = g(L)+c(L)−1 the modified
genus of L (for knots g = ĝ). Having a non-split link diagram, by replacing crossings
of different components by parallel clasps (which preserves the modified genus), we
get back to the knot case. In fact we see that the numbers dcg (defined analogously
to dg, but for c component links of modified genus g) satisfy dcg ≤ dg − c + 1, and
so, for example, you can show that the sequences∑

c>1 odd

acn,g

an,g
,

∑
c even

acn,g

an±1,g
, and therefore also

∑
c>1

acn,g

an,g + an±1,g

for fixed g tend to zero as n→∞, where

acn,g := #{ L alternating non-split link of c components

with ĝ(L) = g and c(L) = n}

and an,g := a1
n,g. That is, alternating knots present the richest variety on alternat-

ing links of given modified genus.
This property will extend to split links without trivial split components, if the

following conjecture is true.

Conjecture 4.1. The d-numbers are strongly superadditive, that is, da+b > da+db
for any positive a, b ∈ N.
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5. Some questions and conjectures revisited

We review several questions and conjectures in the light of the preceding results.
The first question is related to Vassiliev invariants [3, 5].

Conjecture 5.1. There is no primitive Vassiliev invariant vanishing on knots of
genus one (or weaker, of bounded genus).

As we observed, the condition that the Vassiliev invariant be primitive (and the
genus be bounded) is essential. Moreover, for a (potential) proof we will need the
vanishing on (genus one) knots without minimal canonical Seifert surfaces. The
case that Whitehead doubles as a special class of such knots has been considered
independently before in different contexts, so it is worth establishing some connec-
tion.

It has been observed by McDaniel and Rong [18], that dualizing the (untwisted)
Whitehead double operation (even with any tangle instead of a clasp) on the space of
knot invariants induces an endomorphism of the filtered (but not graded) space V =⋃∞
n=1 Vn of Vassiliev invariants (the filtration given by subspaces Vn of invariants

of degree at most n). An invariant of the kind considered in the conjecture clearly
lies in the kernel of this map. This is of course just a necessary condition, and the
primitive Vassiliev invariant of degree 2 (killed by this map) is easily observed not
to have the property in the conjecture. Anyway, the conjecture inspires the quest
for some understanding of this kernel. However, the dimension of this kernel on
Vn/Vn−1 is quite large – it is at least 1/(n−1) of the whole dimension of Vn/Vn−1.
In fact, this map is nilpotent on each Vn, because of the observation of Lin (see [4,
p. 283, (ii)]) that (n-fold) iterated Whitehead doubles are n-trivial. So there may
be very many primitive Vassiliev invariants lying in the kernel. On the other hand,
it is not clear how large the space of primitive invariants is. We do not yet know
for example whether

dim{primitive Vassiliev invariants of degree n}
dim{all Vassiliev invariants of degree n}

n→∞→ 0 .

So there are many things that can happen . . .
Another question was posed by C. Adams [1]. Roughly it is:

Question 5.1. How many knots possess minimal canonical Seifert surfaces?

Using Theorem 2.1 we can answer the question for genus one knots: up to a
given crossing number polynomially many out of exponentially many. (We will in
the following observe that the results of §3 suggest a similar(ly bad) situation for
any fixed genus.) That there are exponentially many genus one knots for bounded
crossing number follows from the fact that the Whitehead doubles of distinct knots
are distinct, their crossing number is linearly bounded in the crossing number of
their companion and that the number of knots of given crossing number has an
exponential lower bound [11]. (On the other hand, there are at most exponentially
many knots of fixed crossing number at all [35].) Therefore, there are exponentially
many Whitehead doubles of crossing number at most n and so also exponentially
many of crossing number exactly n for infinitely many n (as the partial sum sequence
of some sequence (an) grows weaker than any exponential Cn in n, C > 1, if (an)
does so).

Question 5.2 (see [29]). Does any positive knot realize its unknotting number in
a positive diagram?



KNOTS OF GENUS ONE 2155

Corollary 2.5 allows us to answer positively this question for unknotting number
one. (In fact, it was my result of [32], that connected almost positive unknot
diagrams are unknotted twist knot diagrams, which inspired me to prove corollary
2.5). The general answer appears by far not trivial, though.

Question 5.3. Which alternating knots have unknotting number one? Does any
alternating unknotting number one knot realize its unknotting number in an alter-
nating diagram?

Concerning the first part of the question, there are alternating non-twist knots
of unknotting number one. 814 and 76 are examples. (An unknotted version of 76

can be found in [1, fig. 5.59, p. 151].) Note, that, unlike 814 and 76, in general an
alternating knot does not realize its unknotting number in an alternating diagram.
The first such example, 108, is due to Bleiler and Nakanishi [1, p. 73] and has
unknotting number two. Therefore, the second part of the question. Note also,
that as a consequence of the Tait flyping conjecture [20], each alternating diagram
of an alternating knot has the same unknotting number, so each alternating knot
realizes its unknotting number either in any or in no alternating diagram (see [29,
remark 3.7]).
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North-Holland, 1995. MR 96h:05001

http://www.ams.org/mathscinet-getitem?mr=94m:57007
http://www.ams.org/mathscinet-getitem?mr=93h:57005
http://www.ams.org/mathscinet-getitem?mr=97d:57004
http://www.ams.org/mathscinet-getitem?mr=94b:57007
http://www.ams.org/mathscinet-getitem?mr=94d:57010
http://www.ams.org/mathscinet-getitem?mr=2000b:57016
http://www.ams.org/mathscinet-getitem?mr=90g:57020
http://www.ams.org/mathscinet-getitem?mr=90f:57001
http://www.ams.org/mathscinet-getitem?mr=85e:57003
http://www.ams.org/mathscinet-getitem?mr=88m:57006
http://www.ams.org/mathscinet-getitem?mr=96h:05001


2156 A. STOIMENOW

15. L. H. Kauffman, New invariants in the theory of knots, Amer. Math. Mon. 95 (1988),
195–242. MR 89d:57005

16. T. Kanenobu, Examples on polynomial invariants for knots and links, Math. Ann. 275
(1986), 555–572. MR 88b:57010

17. T. Kobayashi, Minimal genus Seifert surfaces for unknotting number 1 knots, Kobe J.
Math. 6 (1989), 53–62. MR 90k:57008

18. M. McDaniel and Y. Rong, On the dimensions of Vassiliev invariants coming from link
polynomials, George Washington University preprint, March 1997.

19. W. W. Menasco, Closed incompressible surfaces in alternating knot and link complements,
Topology 23 (1) (1986), 37–44. MR 86b:57004

20. W. W. Menasco and M. B. Thistlethwaite, The Tait flyping conjecture, Bull. Amer. Math.
Soc. 25 (2) (1991), 403–412. MR 92b:57017

21. H. R. Morton, Seifert circles and knot polynomials, Proc. Camb. Phil. Soc. 99 (1986),
107–109. MR 87c:57006

22. K. Murasugi, Jones polynomial and classical conjectures in knot theory, Topology 26 (1987),
187–194. MR 88m:57010

23. M. Polyak and O. Viro, Gauss diagram formulas for Vassiliev invariants, Int. Math. Res.
Notes 11 (1994) 445–454. MR 95k:57012

24. and , On the Casson knot invariant, preprint.
25. J. H. Przytycki and K. Taniyama, Almost positive links have negative signature, draft, 1991.
26. L. Rudolph, Positive links are strongly quasipositive, preprint, available at the math preprint

server, preprint number 9804003.
27. T. Stanford, Braid commutators and Vassiliev invariants, Pacific Jour. of Math. 174 (1)

(1996). MR 97i:57008
28. A. Stoimenow, Gauß sum invariants, Vassiliev invariants and braiding sequences, J. of

Knot Theory and Its Ram. 9 (2) (2000), 221–269.
29. , Positive knots, closed braids and the Jones polynomial, preprint.
30. , Genera of knots and Vassiliev invariants, Jour. of Knot Theory and its Ramifica-

tions 8(2) (1999), 253–259. MR 2000b:57019
31. , On some restrictions to the values of the Jones polynomial, preprint.
32. , Gauss sums on almost positive knots, preprint.
33. M. B. Thistlethwaite, A spanning tree expansion for the Jones polynomial, Topology 26

(1987) 297–309. MR 88h:57007
34. P. Traczyk, Non-trivial negative links have positive signature, Manuscripta Math. 61 (1988),

279–284. MR 89g:57010
35. D. J. A. Welsh, On the number of knots and links, Sets, graphs and numbers (Budapest,

1991), 713–718, Colloq. Math. Soc. János Bolyai, 60, North-Holland, Amsterdam, 1992.
MR 94f:57010

36. W. C. Whitten, Isotopy types of minimal knot spanning surfaces, Topology 12 (1973),
373–380. MR 51:9046

Ludwig-Maximilians University Munich, Mathematics Institute, Theresienstraße 39,

80333 München, Germany

E-mail address: stoimeno@informatik.hu-berlin.de

URL: http://www.informatik.hu-berlin.de/~stoimeno
Current address: Max Planck Institute of Mathematics, P.O. Box 7280, D-53072 Bonn, Ger-

many
E-mail address: alex@mpim-bonn.mpg.de

http://www.ams.org/mathscinet-getitem?mr=89d:57005
http://www.ams.org/mathscinet-getitem?mr=88b:57010
http://www.ams.org/mathscinet-getitem?mr=90k:57008
http://www.ams.org/mathscinet-getitem?mr=86b:57004
http://www.ams.org/mathscinet-getitem?mr=92b:57017
http://www.ams.org/mathscinet-getitem?mr=87c:57006
http://www.ams.org/mathscinet-getitem?mr=88m:57010
http://www.ams.org/mathscinet-getitem?mr=95k:57012
http://www.ams.org/mathscinet-getitem?mr=97i:57008
http://www.ams.org/mathscinet-getitem?mr=2000b:57019
http://www.ams.org/mathscinet-getitem?mr=88h:57007
http://www.ams.org/mathscinet-getitem?mr=89g:57010
http://www.ams.org/mathscinet-getitem?mr=94f:57010
http://www.ams.org/mathscinet-getitem?mr=51:9046

	1. Introduction
	2. Knot diagrams with canonical Seifert surfaces of genus one
	3. Higher genera
	4. A remark on links
	5. Some questions and conjectures revisited
	Acknowledgement
	References

