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LATTICE PROPERTIES OF SUBSPACE FAMILIES
IN AN INNER PRODUCT SPACE

PAVEL PTÁK AND HANS WEBER

(Communicated by David R. Larson)

Abstract. Let S be a separable inner product space over the field of real num-
bers. Let E(S) (resp., C(S)) denote the orthomodular poset of all splitting
subspaces (resp., complete-cocomplete subspaces) of S. We ask whether E(S)
(resp., C(S)) can be a lattice without S being complete (i.e. without S being
Hilbert). This question is relevant to the recent study of the algebraic proper-
ties of splitting subspaces and to the search for “nonstandard” orthomodular
spaces as motivated by quantum theories. We first exhibit such a space S that
E(S) is not a lattice and C(S) is a (modular) lattice. We then go on showing
that the orthomodular poset E(S) may not be a lattice even if E(S) = C(S).
Finally, we construct a noncomplete space S such that E(S) = C(S) with
E(S) being a (modular) lattice. (Thus, the lattice properties of E(S) (resp.
C(S)) do not seem to have an explicit relation to the completeness of S though
the Ammemia-Araki theorem may suggest the opposite.) As a by-product of
our construction we find that there is a noncomplete S such that all states on
E(S) are restrictions of the states on E(S) for S being the completion of S
(this provides a solution to a recently formulated problem).

1. Preliminaries

This paper continues to study algebraic properties of splitting subspaces (see [1],
[2], [3], [7], [8], [14], etc.) and contributes to the investigation of “nonstandard”
orthomodular spaces (see [4], [9], [11], [13], [16], etc.). Let us first review basic
notions, as we shall use them in the sequel.

Let S be an inner product space over the reals and let (·, ·) be the inner product
on S. Let us set, for each subset A of S, A⊥ = {b ∈ S|(a, b) = 0 for any a ∈ A}. Let
us further denote by E(S) the set of all subspaces A of S such that A + A⊥ = S.
Using the symbol ⊕ to denote the sum of orthogonal spaces, we have E(S) = {A ⊂
S|A⊕A⊥ = S}.

Let us endow E(S) with the partial ordering given by inclusion ⊂ and with the
above defined orthocomplementation ⊥. Then E(S) can be viewed as an ortho-
complemented poset and will be looked at this way in the sequel.
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Let C(S) be the collection of all complete and all cocomplete subspaces of S (by
a cocomplete subspace of S we mean a subspace B such that B = A⊥ in S for a
complete subspace A). As we show in the following Proposition 1.1, the set C(S)
is a subset of E(S). If we endow C(S) with the partial ordering and orthocomple-
mentation inherited from E(S), then we obtain another orthocomplemented poset.
Both sets E(S) and C(S) in fact form an orthomodular poset. Let us show this,
together with some other useful properties, in Proposition 1.1. Though most of the
properties are known (see [14] and [2]), we collect them for the convenience of the
reader. We also want to arrange them so that an explicit reference is possible.

Proposition 1.1. Let S be an inner product space and let E(S) and C(S) be or-
thocomplemented posets defined above. Then:

(i) if A is complete or cocomplete, then A ∈ E(S),
(ii) if A,B ∈ E(S) and A ⊂ B⊥, then A⊕ B ∈ E(S), A ⊕ B = A ∨ B in E(S),

(A⊕B)⊥ = A⊥∩B⊥, and A⊥∩B⊥ ∈ E(S); in particular, A⊥∩B⊥ = A⊥∧B⊥
in E(S),

(iii) if v ∈ S and A ∈ E(S), then A+ [v] ∈ E(S) (the symbol [v] denotes the span
of v in S),

(iv) E(S) is an orthomodular poset (for the definition of orthomodular poset, see
e.g. [15]),

(v) C(S) is an orthomodular poset (in fact, C(S) is a suborthomodular poset of
E(S)),

(vi) for any A,B ∈ E(S), if the infimum A∧B exists in E(S), then A∧B = A∩B.

Proof. (i) Suppose that A is a complete subspace of S and suppose further that
H is the completion of S. Obviously, A is a closed subspace of H . Let A′ be the
orthocomplement of A in H . Then H = A⊕A′ and, moreover, A⊥ = A′ ∩S. Since
A ⊂ S, we obtain S = A ⊕ (A′ ∩ S). As a consequence, both A and A⊥ belong to
E(S).

(ii) Let us show that (A ⊕ B) ⊕ C = S, where C = A⊥ ∩ B⊥. Observing that
A⊥ ∩ B⊥ = (A + B)⊥, let us take d ∈ S. Then d = a1 + ã1, where a1 ∈ A and
ã1 ∈ A⊥, and, also, d = b1 + b̃1, where b1 ∈ B and b̃1 ∈ B⊥. Thus, d = (a1 +b1)+c,
where c = d − a1 − b1. It follows that c = ã1 − b1. Moreover, ã1 ∈ A⊥ and
b1 ∈ B ⊂ A⊥. As a consequence, c ∈ A⊥. Analogously, c ∈ B⊥. Thus, c ∈ A⊥∩B⊥.
We have shown that (A⊕B)⊕ (A⊥ ∩B⊥) = S. Hence, both A⊕B and A⊥ ∩B⊥
belong to E(S). Thus, A ∨B = A⊕B and A⊥ ∧B⊥ = A⊥ ∩B⊥ in E(S).

(iii) Write v = v1 + v2, where v1 ∈ A and v2 ∈ A⊥. Then A+ [v] = A⊕ (v2), but
the latter space obviously belongs to E(S) (Proposition 1.1 (ii)).

(iv) We must verify the orthomodular law in E(S). Thus, we must prove that
for each couple A,B ∈ E(S) with A ⊂ B, the infimum B ∧A⊥ and the supremum
A ∨ (B ∧A⊥) exist and, moreover, we have the equality B = A ∨ (B ∧A⊥). Since
A ⊂ B, we have B = B∩(A⊕A⊥) = A⊕(B∩A⊥). Applying Proposition 1.1 (ii) to
the couple A,B⊥, we obtain that the infimum A⊥∧B exists in E(S) and, moreover,
A⊥ ∧ B = A⊥ ∩ B. As the spaces A and A⊥ ∧ B are orthogonal, the supremum
A∨ (A⊥ ∧B) exists and A∨ (A⊥ ∧B) = A⊕ (A⊥ ∧B). Hence, B = A∨ (B ∧A⊥).

(v) Let A,B ∈ C(S) and let A ⊂ B⊥. By Proposition 1.1 (i), (ii), the supremum
A ∨ B exists in E(S) and A ∨ B = A ⊕ B. It only remains to be shown that
A ⊕ B ∈ C(S), but this is easy (one only observes that if S is not complete, then
both A and B cannot be complete).
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(vi) Write C = A∧B. Then C ⊂ A∩B. If there is a vector v ∈ S which belongs
to (A ∩ B)\C, then C + [v] ∈ E(S) and therefore C + [v] ⊂ A and C + [v] ⊂ B.
This means that C 6= A ∧B which is a contradiction.

2. Results

Let us now formulate and prove the results we announced in the abstract.

Theorem 2.1. Let S be an inner product space and let S possess a countable linear
basis. Then E(S) is not a lattice. Moreover, C(S) consists of all finite dimensional
and cofinite dimensional subspaces of S and therefore C(S) is a modular lattice.

Proof. The proof uses the technique of Theorem 4 in [11]. Let us first prove that
E(S) is not a lattice. Let us divide the proof into a few propositions.

Proposition 2.1.1. Let S1, S2 be inner product spaces and let both S1, S2 have a
countable linear basis. Then S1 and S2 are isomorphic as inner product spaces.
Thus, E(S1) and E(S2) are isomorphic as orthomodular posets.

Proof. Let {ai|i ∈ N} (resp. {bi|i ∈ N}) be countable linear bases of S1 (resp.,
S2). Using the Gram-Schmidt orthogonalization process we can construct the cor-
responding orthonormal bases {ei|i ∈ N} (resp. {fi|i ∈ N}) of S1 (resp. S2). The
coordinate assignment then yields the required inner product isomorphism.

Proposition 2.2.2. Let c00 denote the space of all sequences of reals whose coor-
dinates are all 0 up to a finite set. Take the vector v = (1, 1

2 ,
1
3 , . . . ,

1
n , . . . ) ∈ l2(N)

and put S = c00 ⊕ [v] (S understood as an l2 inner product subspace). Then E(S)
is not a lattice.

Proof. Let fn denote the “Cronecker delta” vector in S, i.e., let (fn)m = δmn , where
δmn = 1 if m = n and δmn = 0 otherwise. Let F1 = span{fn|n ∈ N,n is even} and
F2 = span{fn|n ∈ N,n is odd}. Then we easily see that F1 ⊕ F2 = c00. The rest
will be established in a series of statements.

Statement 1. In S, F⊥1 = F2, and F⊥2 = F1.
Indeed, we first see that F2 ⊂ F⊥1 . In order to check the inclusion F⊥1 ⊂ F2,

take b ∈ c00 and α ∈ R such that a = b + α · v ∈ F⊥1 . Then α = 0 (otherwise
the vector a cannot have “almost all” coordinates equal to 0). Thus, a ∈ F2 and
therefore F⊥1 ⊂ F2.

Statement 2. F2 + [v] 6∈ E(S).
Indeed, suppose that it is not the case and look for a contradiction. If F2 +

[v] ∈ E(S), then (F2 + [v]) ⊕ (F2 + [v])⊥ = S = (F2 + [v]) + F1. Obviously,
(F2 + [v])⊥ ⊂ F⊥2 = F1. This implies that F1 = (F2 + [v])⊥ and hence v ∈ F⊥1 .
This is absurd.

Statement 3. Let
A = span{2n · f2n − (2n+ 2) · f2n+2|n ∈ N,n is odd},
B = span{(2n+ 2) · f2n + 2n · f2n+2|n ∈ N,n is odd}.

Then v ∈ A⊥, A⊕B = F1 and (F2 +[v]+B)⊕A = S. Thus, (F2 +[v]+B) ∈ E(S).
Indeed, it is a matter of straightforward verification that A and B have been

constructed in such a manner that they satisfy the last three properties.
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Statement 4. Let us set
C = span{(2n+ 2) · f2n+2 − (2n+ 4) · f2n+4|n ∈ N,n is odd},
D = span{f2}+ span{(2n+ 4) · f2n+2 + (2n+ 2) · f2n+4|n ∈ N,n is odd}.

Then v ∈ C⊥, C⊕D = F1, C⊕(F2 +[v]+D) = S (and, hence, F2 +[v]+D ∈ E(S)),
and B ∩D = {o} (the symbol o denotes the zero vector).

Indeed, one can easily check that all properties but the last one can be verified
by a straightforward computation. Let us verify the last property. We want to
show that B ∩D = {o}. Let us suppose that x ∈ B ∩D. Then

x =
p∑

n=1,
n is odd

αn · ((2n+ 2) · f2n + 2n · f2n+2)

= β0 · f2 +
q∑

n=1,
n is odd

βn · ((2n+ 4) · f2n+2 + (2n+ 2) · f2n+4).

If x 6= o, then we may assume that αp 6= 0 and αq 6= 0. Then 2p+2 (resp. 2q+4) is
the greatest index for which the coefficient of fi in the first sum (resp. the second
sum) is distinct from 0. But then 2p+ 2 = 2q+ 4 which is impossible in view p and
q being odd. It follows that B ∩D = {o}.

We are in the position to return to Theorem 2.1 and complete the proof. Let
K = F2 + [v] + B and L = F2 + [v] + D. We have already proved that both
K and L belong to E(S). Let us show that K ∩ L = F2 + [v]. Suppose that
z ∈ K ∩ L. Then z = x+ b = y + d, where x, y ∈ F2 + [v] and b ∈ B, d ∈ D. Then
b − d = y − x ∈ F2 + [v]. From the definition of B,D and F2 we immediately see
that b − d = o. Thus, b = d and since B ∩D = {o}, we see that b = d = o. This
means that z = x ∈ F2 + [v]. But F2 + [v] does not belong to E(S). In view of
Proposition 1.1 (vi), the infimum K ∧L does not exist in E(S). Thus, E(S) is not
a lattice.

To complete the proof of Theorem 2.1, it remains to be shown that C(S) consists
of all finite dimensional and cofinite dimensional subspaces of S. This is obvious
because each Hilbert space has either a finite or uncountable linear dimension (see
e.g. [5]).

In the rest of the paper we will examine dense hyperplanes in a Hilbert space.
The reason is obvious from the following proposition.

Proposition 2.2.3. Let H be a Hilbert space and let S be a dense linear hyperplane
in H (i.e., let S be a dense subspace of H with dimH/S = 1). Then E(S) = C(S).

Proof. Let A ∈ E(S) and B = A⊥. Then S = A⊕B. Passing to the completion and
observing that A⊕B = A⊕B, we see that H = S = A⊕B. By a straightforward
linear algebra computation, we obtain dimA/A+dimB/B = dimH/S = 1. There-
fore either dimA/A = 1, in which case B = B (i.e., B is complete) or dimB/B−1,
in which case A = A (i.e., A is complete). It follows that E(S) = C(S).

Remark 2.2.4. It is interesting to observe that if S is a dense linear hyperplane in H ,
then the orthomodular poset E(S) possesses a two-valued state s : E(S) → {0, 1}.
Indeed, we then have E(S) = C(S) and C(S) always possesses such a state: Since
each A ∈ C(S) is either complete or cocomplete, it suffices to let s(A) = 1 if,
and only if, A is cocomplete. The presence of two-valued states on E(S), for
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S incomplete, sheds light on problems studied in [2], Chapter 4 (for an explicit
consequence, see the comments at the end of this paper).

Prior to the next result, let us recall a known property of infinite dimensional
Hilbert spaces.

Proposition 2.2.5. Let H be an infinite dimensional Hilbert space. Then there
are closed subspaces A0 and B0 of H such that A0 + B0 is not closed in H and,
moreover, dim(A⊥0 ∩B⊥0 ) =∞.

Proof. Let {b1, b2, . . . , bn, . . . } be an orthonormal sequence of H . Let A0 =
span{b3n|n ∈ N} and B0 = span{b3n + 1

nb3n+1|n ∈ N}. Then the vector v =∑
n∈N

1
nb3n+1 does belong to A0 +B0 but v does not belong to A0 + B0. More-

over, A⊥0 ∩B⊥0 ⊃ span{b3n+2|n ∈ N}. The proof is complete.

Our next result shows that E(S) may not be a lattice even if E(S) = C(S).
Prior to its formulation, let us collect some properties of hyperplanes.

Proposition 2.2.6. Let S be a dense hyperplane in a Hilbert space H. Then the
following statements hold true:

(i) If A is a closed subspace of S and A is the closure of A in H, then there is a
vector x ∈ H such that A = A+ [x].

(ii) If A,B ∈ C(S) and A ∩B is not complete, then A ∩B = A ∩B.

Proof. (i) Since A ∩ S = A, we obtain dimA/A ≤ dimH/S = 1. This proves the
first statement.

(ii) Let x ∈ A ∩B − (A∩B). Then x 6∈ S and therefore x ∈ A\A and x ∈ B\B.
This yields (Proposition 2.2.6 (i)) that A ∩B = (A ∩ B) + [x], A = A + [x] and
B = B + [x]. Let us prove that A ∩ B = A ∩B. Suppose y ∈ A ∩ B. We can
write y = a+ αx = b + βx for some α, β ∈ R and a ∈ A, b ∈ B. This implies that
(α−β)x = b−a ∈ S and since x 6∈ S, we obtain α−β = 0. Thus, α = β and a = b.
As a consequence, y = a+ αx ∈ (A ∩B) + x and this implies that y ∈ A ∩B.

Theorem 2.2.7. Let H be a Hilbert space. Then there is a dense hyperplane, S,
in H such that E(S) is not a lattice.

Proof. Let A0, B0 be closed subspaces of H with the property of Proposition 2.2.5.
Choose a vector x0 ∈ H so that x0 ∈ A0 +B0 − (A0 + B0). Write A1 = A′0 and
B1 = B′0 (again A′0 and B′0 denote the complements of A0 and B0 in H). By our
construction, dim(A1 ∩B1) =∞ and therefore there is a dense hyperplane, S1, in
A1 ∩ B1. It follows that there exists x1 ∈ H such that S1 + [x1] = A1 ∩ B1. We
can then write H = (A1 ∩B1)⊕A0 +B0 = (S1 + [x1])⊕ ([x0] +A0 +B0 + C) for
a subspace C of H . Thus, x0 6∈ S1 + A0 + B0 + [x0 + x1] because if it is not the
case, we have the equation x0 = s1 + a0 + b0 +α(x0 + x1), where s1 ∈ S1, a0 ∈ A0,
b0 ∈ B0. This gives us the equation

s1 + αx1 = (1 − α)x0 − a0 − b0.

Since s1 + αx1 ∈ A1 ∩ B1 and (1 − α)x0 − a0 − b0 ∈ A0 +B0 = (A1 ∩ B1)⊥, we
obtain s1 + αx1 = 0 which is impossible.

Let S be a dense hyperplane in H such that x0 6∈ S and S1+A0+B0+[x0+x1] ⊂
S. Then x0 ∈ S. Obviously, x1 6∈ S. Let A = A⊥0 and B = B⊥0 (the complements
are taken in S). Since A0, B0 are complete, both A and B belong to E(S) (= C(S)).
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We will show that A ∧ B does not exist in E(S). Suppose A ∧ B exists. Then
A ∧B = A ∩B. We will prove that A ∩B is neither complete nor cocomplete.

Let us first show that A∩B is not complete. We start by proving thatA = A1 and
B = B1. Suppose that A 6= A1 (the case of B argues analogous). Since A ⊂ A ⊂ A1

and dimA1/A = 1, the strict inclusion A ⊂ A1 implies that A = A. This means
that A is complete. Since A is also cocomplete (in S), then S = A0⊕A and therefore
S is complete. This contradiction shows that A = A1. Since S1 ⊂ A1 ∩ B1, we
obtain S1 ⊂ A1 ∩ S = A ∩ S = A. Analogously, S1 ⊂ B. As a consequence,
S1 ⊂ A ∩ B ⊂ A1 ∩ B1 = S1 + [x1]. Moreover, x1 6∈ S and therefore x1 6∈ A ∩ B.
Hence, S1 = A ∩ B and x1 ∈ S1. This means that x1 ∈ A ∩B − (A ∩ B) and
therefore A ∩B is not complete.

Let us show that A ∩ B is not cocomplete. Since by Proposition 2.2.6 (ii) we
have the equality A ∩B = A ∩B, we can consecutively write

(A ∩B)′ = A′ +B′ = A
′
+B

′
= A′1 +B′1 = A0 +B0.

But x0 ∈ A0 +B0 and A0 +B0 = (A ∩ B)′. Moreover, (A ∩ B)⊥ = (A ∩ B)′ ∩ S.
Since A0 +B0 ⊂ (A ∩B)′ ∩ S, we see that x0 ∈ A0 +B0 ⊂ (A ∩B)⊥. But x0 6∈ S
and therefore x0 6∈ (A∩B)⊥. Thus, (A∩B)⊥ is not complete. It follows that A∩B
is not cocomplete. We have proved that A ∩B is neither complete nor cocomplete
and therefore A ∩B does not exist in E(S). Thus, E(S) is not a lattice.

We will finally show that there is a dense hyperplane S in H such that E(S)
(= C(S)) is a lattice.

Theorem 2.2.8. Let H be a separable Hilbert space. Then H possesses a hyper-
plane, S, such that S contains no infinite dimensional complete subspace. As a
consequence, E(S) consists of subspaces of S which have finite or cofinite dimen-
sion. Thus, E(S) is a modular lattice.

Proof. Since H possesses a countable dense subset and since each complete subset
is determined by its (countable) dense subset, we see that there is 2χ0 complete
infinite dimensional subspace of H . Take the initial ordinal, ω, of the cardinality
2χ0 and let C = {Cα|Cα is a complete subspace of H , α < ω}. We will construct
a linearly independent family of vectors in H , F = {vα|α < ω}, such that for each
α, α < ω, we have vα ∈ Cα. It is known that the linear dimension of H is 2χ0

(see [5]). We can therefore proceed by transfinite induction. For C1 we take for v1

an arbitrary nonzero vector of C1. Suppose that all vectors vβ (β < α) have been
constructed. Since cardCα = 2χ0 and since card{vβ |β < α} > 2χ0 , there must be a
vector, vα, in Cα so that the family {vβ|β ≤ α} is linearly independent. Having this
verified, let us enlarge the entire family {vβ|β < ω} to a linear basis of H . Take the
linear function, f , on H so that f(vβ) = pβ for each β (β < ω), where {pβ|β < ω}
is an arbitrary unbounded family of positive numbers. Then the set S = f−1(0) is
a dense hyperplane of H and, by our construction, S does not contain a complete
subspace of infinite dimension.

Let us observe in conclusion that Theorem 2.2.8 allows us to obtain the answer
to a question published in [2] (Problem 4.3.13, p. 234).

Let S be an incomplete inner product space and let S be its completion (thus,
S is a Hilbert space). If we consider E(S) as a suborthomodular poset of E(S)
(we can do so since the embedding e : E(S)→ E(S) such that e(A) = A obviously
preserves the complements), a natural question occurs whether there is always a
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state on E(S) which is not a restriction of a “Hilbertian” state on E(S). Consider
the space S constructed in Theorem 2.2.8. We claim that each state on E(S) is a
restriction of a state on E(S), answering the above posed question to the negative.
By Theorem 2.2.8, E(S) consists of finite dimensional and cofinite dimensional sub-
spaces of S. Since each state on E(S) which lives on a finite dimensional subspace
of S obviously is a restriction of a state on E(S), it remains to be shown that so is
the (only) “free” state, s, on E(S). This state s is determined as follows: s(A) = 1
if, and only if, A is cofinite dimensional. But there is a state, s, on E(S) which
vanishes on all finite dimensional subspaces of S (see e.g. [10]). It is clear that s is
a restriction of s. This completes the proof.
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