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Abstract. For a pair of linear bounded operators T and A on a complex
Banach space X, if T commutes with A, then the orbits {AnTA−n} of T under
A are uniformly bounded. The study of the converse implication was started in
the 1970s by J. A. Deddens. In this paper, we present a new approach to this
type of question using two localization theorems; one is an operator version of
a theorem of tauberian type given by Katznelson-Tzafriri and the second one
is on power-bounded operators by Gelfand-Hille. This improves former results
of Deddens-Stampfli-Williams.

Let B(X) , B(H) and A denote respectively the algebra of all bounded linear
operators on a complex Banach space X , the algebra of all bounded linear operators
on the complex separable infinite dimensional Hilbert space H , and a complex
Banach algebra. The symbols Sp(S) and r(S) denote respectively the spectrum
and the spectral radius of the operator S ∈ B(X), and as usual S is called quasi-
nilpotent if Sp(S) = {0}. Given an invertible operator A, the study of operators
T whose conjugation orbit {AnTA−n} is bounded, that is, for T ∈ B(X) and A
invertible,

sup
n≥0
‖AnTA−n‖ <∞,(1)

was initiated by J. A. Deddens in the 1970s when he gave a characterization of nest
algebras in terms of the algebra BA, where BA is the set of operators T in B(X)
satisfying (1). It is clear that BA contains the commutant {A}′ of A, but in general
this inclusion may be proper. J. A. Deddens and T. K. Wong showed that, if
A ∈ B(H) is of the form A = αI + N where 0 6= α ∈ C and N is nilpotent, then
BA = {A}′. Furthermore, if H is finite dimensional, then the converse holds ; see
[3] and [4]. In [4], Deddens raised the question : does the converse result still hold
in infinite dimensional Hilbert spaces? A negative answer to Deddens’ question was
provided by P. Roth [10]. The algebra BA was further studied by J. P. Williams
[13] and J. Stampfli [12].

Recently, a quantitative version of these results was given in [6]. It provides
us with a bound on ‖eSTe−S − T ‖ in terms of the spectral radius r(∆S) of the
commutator ∆S(T ) = ST − TS,
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On the other hand, in 1941 I. Gelfand proved that if a is a doubly power-bounded
element of A, that is, supn ‖an‖ < ∞, and the spectrum of a is reduced to the
singleton {1}, then a = 1A. In 1944, N. Dunford and E. Hille tried independently
to find out whether all the assumptions are needed in Gelfand’s theorem. In 1950,
G. E. Shilov [11] solved the conjecture and gave an example showing that the
boundedness of only the positive power of a is not sufficient.

It is very surprising to see these two research areas living in a parallel manner
with no interconnections. Our aim in this paper is to bring these two areas together,
show that they are closely related, and use a new approach to improve former results
of J.A. Deddens, J.P. Williams, and J. Stampfli (cf. Corollary 4 below).

Let a and b be in A and k be a positive integer. Put

Bka,b = {x ∈ A : ‖anxbn‖ = O(nk), as n→∞},
and

Ra,b = {x ∈ A : lim
n→∞

‖anxbn‖ = 0}.

For the case b = a−1 and k = 0, we recover Deddens’ classes Ba = B0
a,a−1 and

Ra = Ra,a−1 .
Assume that a, b are invertible and supn≥0 ‖b−na−n‖ < ∞. Then it is easy to

see that Ba,b = B0
a,b is a sub-algebra of A, which is not necessarily closed. In

that case Ra,b becomes a two-sided ideal which is contained in the Jacobson radical
Rad(Ba,b) of Ba,b.

For each x in Ba,b, let C(x) = supn≥0(‖b−na−n‖‖anxbn‖). Then C(.) defines a
new norm for which Ba,b is a Banach algebra, and Ra,b is a closed two-sided ideal.
Furthermore, C(x) and ‖x‖ are equivalent norms if and only if x is in Ba,b.

For a, b in A, let Da,b(x) = axb for each x ∈ A. We denote by {a, b}′ the set
of fixed points of Da,b. Caution : {a, b}′ is not the commutant of the set {a, b}.
For the case b = a−1, the class {a, b}′ reduces to the commutant {a}′. The Cesáro
means of T are defined by Mn(T ) = I+T+...+Tn−1

n . We shall be using the identity

(T − I)Mn(T ) =
T n − I
n

.(2)

The condition x in Ba,b is equivalent to Da,b being locally power-bounded in B(A),
that is, supn≥0 ‖Dn

a,b(x)‖ <∞.

Theorem 1. Assume that Sp(a) = Sp(b) = {1}. Then Ba,b ∩ Bka−1,b−1 = {a, b}′,
for all k.

Proof. By [8, Theorem 10], we obtain Sp(Da,b) = Sp(a)Sp(b) = {1}. Assume
that x is in Ba,b ∩ Bka−1,b−1 . Then ‖Dn

a,b(x)‖ = O(1), as n → ∞ and ‖Dn
a,b(x)‖ =

O(nk), as n→ −∞. By the local Gelfand-Hille theorem [1, Theorem 3.4], we obtain
(Da,b − I)k+1x = 0.

Suppose that (Da,b − I)px = 0, for some p ≥ 2, and let y = (Da,b − I)p−1x.
Then Da,b(y) = y. This implies that Mn(Da,b)y = y. On the other hand, from (2)
applied to the operator T = Da,b, we obtain

Mn(Da,b)y = (Da,b − I)p−2Mn(Da,b)(Da,b − I)x

= (Da,b − I)p−2 (
Dn
a,b − I
n

)x→ 0, as n→∞.

Hence, (Da,b − I)p−1x = y = 0. By induction, we obtain that (Da,b − I)x = 0,
which completes the proof.
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Theorem 2. Fix x in A, and let a, b be in A. Assume that
(i) Sp(a) = Sp(b) = {1};
(ii) ‖ 1

n

∑n−1
k=0 a

kxbk‖ = O(1), as |n| → ∞.
Then x ∈ {a, b}′.
Proof. By [8, Theorem 10], we have Sp(Da,b) = {1}. By (2) and the local Gelfand-
Hille theorem [1, Theorem 3.4], condition (ii) implies (Da,b−I)2x = 0. By induction,
we obtain Dn

a,b(x) = nDa,b(x) − (n− 1)x. Hence

Mn(Da,b)x =
1
n

n−1∑
k=0

Dk
a,b(x) =

n− 1
2

(Da,b(x)− x) + x.(3)

By (ii) and (3), we can conclude that Da,b(x)− x = 0.

Corollary 3. If Sp(a) = Sp(b) = {1}, then Ba,b ∩Bb,a = {a, b}′.
For the particular case b = a−1, we obtain, as a consequence of Corollary 3, the

following result of J.P. Williams [13, Theorem 2].

Corollary 4. If Sp(a) = {1}, then Ba,a−1 ∩Ba−1,a = {a}′.
Remark 1. Since {a, b}′ ∩ Ra,b = {0}, a natural question that can be raised is
whether Ba,b = {a, b}′ + Ra,b. In general, this is not true. To see this, take A =
B(H), a as an unitary operator with a 6= αI, and b = a−1. Then Ba,b = B(H),
Ra,b = {0}, and {a}′ 6= B(H).

For a and b elements of a Banach algebra A, let πR : Ba,b → Ba,b/Ra,b be
the canonical surjective mapping. We have the following interesting commutativity
theorem.

Theorem 5. Let a, b be in A, such that Sp(a) = Sp(b) = {1}. Then πR(Ba,b) =
{πR(a), πR(b)}′.
Proof. Let x ∈ Ba,b. Using the local version of the Katznelson-Tzafriri theorem
(see [2, Theorem 1] or [5, Corollary 3.8]), we obtain ‖Dn

a,b(x)−Dn+1
a,b (x)‖ → 0, as

n→∞. Hence

‖anxbn − an+1xbn+1‖ = ‖an(x− axb)bn‖ → 0, as n→∞.
This implies that x− axb ∈ Ra,b. Since Ra,b is an ideal, the conclusion follows.

Following the same steps as in the proof of Theorem 5, we obtain

Corollary 6. Let a be in A. Then
(i) Sp(a) = {1} =⇒ πR(Ba) = {πR(a)}′;
(ii) Sp(a) = {1} and Ra = {0} =⇒ Ba = {a}′.

Remark 2. (i) In the proofs of Theorem 5 and Corollary 6, it is sufficient to use
the following weaker version of Katznelson-Tzafriri given by J. Esterle.

Let a be an element of norm 1. If Sp(a) = {1}, then ‖an−an+1‖ → 0, as n→∞.
In fact, since Da,b(Ba,b) ⊂ Ba,b, we obtain a contraction which we will denote also
by Da,b without losing any generality. Since Sp(Da,b) = {1}, by applying Esterle’s
theorem, we obtain for any x in Ba,b

‖Dn
a,b(x)−Dn+1

a,b (x)‖ → 0, as n→∞.
The rest of the the proof is as in the proof of Theorem 5 and in Corollary 6 when
b = a−1.
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(ii) From the result obtained in Corollary 6 (ii), a natural and interesting ques-
tion would be whether the reverse implication of (ii) holds, that is, BA = {A}′
implies Sp(A) = {1}. Unfortunately, the answer is negative (see [10, Example 2.12,
p. 506] for an elegant counterexample).

Let us introduce the class Bcva,b = {x ∈ A : (anxbn)n≥0 converges}. It is easy to
see that {a, b}′ +Ra,b ⊂ Bcva,b ⊂ Ba,b.

Theorem 7. If Sp(a) = Sp(b) = {1}, then {a, b}′ ⊕Ra,b = Bcva,b.

Proof. It is sufficient to prove the inclusion Bcva,b ⊂ {a, b}′ +Ra,b. Let x be in Bcva,b.
Using the local version of the Katznelson-Tzafriri theorem (see [2, Theorem 1] or
[5, Corollary 3.8]), we obtain that x− anxbn ∈ Ra,b for every n ≥ 0. On the other
hand, since x is in Bcva,b, the sequence yn = anxbn converges to y and y is in {a, b}′.
Put z = x− y. We claim that z ∈ Ra,b. In fact,

‖anzbn‖ = ‖an(x− y)bn‖ = ‖anxbn − y‖ → 0.

Hence, x = y + z ∈ {a, b}′ +Ra.

Corollary 8. Let a ∈ A and suppose that Sp(a) = {1}. Then the following are
equivalent.

(i) Ra = {0},
(ii) Ba = {a}′,
(iii) Bcva = {a}′.

Example. Using the example given by Roth [10], we will show that there exists
an operator A on a Banach space X for which Sp(A) = {1}, and BA 6= {A}′⊕RA.
In fact, take V as the Volterra integral operator defined by (V f)(t) =

∫ t
0
f(s)ds,

for f in L2[0, 1]. It is well known that Sp(V ) = {0} (cf. [7, Problem 146]). Thus,
the operator (I + V )−1 has its spectrum reduced to {1}. Moreover, it is easy to
see that ‖(I + V )−n‖ = 1 for n ≥ 0 (cf. [7, Problem 150]). Define A and T on

L2[0, 1]⊕ L2[0, 1] by A =
(
I + V 0
0 I

)
and T =

(
0 0
I 0

)
. Then for all integer

n, we obtain AnTA−n =
(

0 0
(I + V )−n 0

)
. Thus T is in BA, but T /∈ {A}′+RA,

because for the opposite case, by Theorem 7, T will be in BcvV . This implies that
(I + V )−n converges to a projection P. Since Sp((I + V )−1) = {1}, we obtain
Sp(P ) = {1}. Hence, P = I. But P is a projection on Ker(I−(I+V )−1). Therefore,
(I + V )−1 = I, which is a contradiction.

Remark 3. (i) In general, statements (i) and (ii) of Corollary 8 are not equivalent.
To see this take the unitary operator A, with A 6= λI. Then BA = B(H), and
RA = Rad(BA) = Rad(B(H)) = {0}. But {A}′ 6= B(H).

(ii) Theorem 1 cannot be extended to the case where the spectrum is countable
instead of Sp(a) = {1}. To see this, let (en)n≥1 be a Hilbert basis in H, and consider
the operator A defined by Ae1 = −e1, and Aen = en, for every n ≥ 2. Then A =
A∗ = A−1, and Sp(A) = {−1, 1}. Since A is unitary, we have BA = BA−1 = B(H),
and therefore {A}′ 6= BA ∩BA−1 .

Finally, we present, in the situation of Banach spaces, a version of the result of
J. Stampfli [12, Theorem 1] and J.P. Williams [13, Theorem 1]. For the proof we
need the following lemma which is probably well known, but we could not find any
reference for it.
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Lemma 9. Let A ∈ B(X) be an invertible. Then the following statements are
equivalent.

(1) There exists an M > 0, such that ‖An‖ ≤M , for every n in Z.
(2) There exists an M > 0, such that, for every n ∈ N and for every x ∈ X,

1
M
‖x‖ ≤ ‖Anx‖ ≤M‖x‖.

(3) There exists an equivalent norm on X for which A is an isometry.
(4) A is similar to an invertible isometry.

Proof. Implications (1) ⇒ (2) and (4) =⇒ (1) are trivial. For (2) ⇒ (3), it is
sufficient to take a new equivalent norm |||x||| = supn≥0 ‖Anx‖. For (3)⇒ (4), we
consider the commutative diagram

(X, ‖ · ‖) A−→ (X, ‖ · ‖)

S−1=Id

y
x S=Id

(X, ||| · |||) A1−→ (X, ||| · |||)

where (X, |||.|||) is the Banach space X with the new norm. Then A = SA1S
−1.

Proposition 10. Let A ∈ B(X) be invertible. Then the following statements are
equivalent.

(1) BA = B(X).
(2) K(X) ⊂ BA, where K(X) is the ideal of compact operators.
(3) A is similar to a non-zero scalar multiple of an invertible isometry.

Proof. Implications (1)⇒ (2) and (3)⇒ (1) are trivial. For (2)⇒ (3), we use ideas
similar to J. P. Williams [13, Theorem 1] and Lemma 9 to conclude the proof.

We finish this paper with some lifting problems in the spirit of Stampfli’s paper.

Problem 1. Let a ∈ C(H) with a ∈ ΩI (ΩI is the connected component of I in
the group of invertible elements of the Calkin algebra C(H) ). Does there exist an
invertible operator A ∈ B(H), satisfying a = π(A), such that π(BA) = Ba, where
π : B(H)→ B(H)/K(H) is the canonical surjective mapping?

Problem 1′. Assume that A is invertible in B(H); does π(BA) = Bπ(A)?

Problem 2. Assume that A is Fredholm. Let BeA = {T ∈ B(H) : π(T ) ∈ Bπ(A)}.
Then

(i)K(H) ⊂ BeA and
(ii) if A is invertible, then BA +K(H) ⊂ BeA.

Does BA +K(H) = BeA?
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