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EASY PROOFS OF RIEMANN’S FUNCTIONAL EQUATION
FOR ζ(s) AND OF LIPSCHITZ SUMMATION

MARVIN KNOPP AND SINAI ROBINS

(Communicated by Dennis A. Hejhal)

Abstract. We present a new, simple proof, based upon Poisson summation,
of the Lipschitz summation formula. A conceptually easy corollary is the
functional relation for the Hurwitz zeta function. As a direct consequence we
obtain a short, motivated proof of Riemann’s functional equation for ζ(s).

Introduction

We present a short and motivated proof of Riemann’s functional equation for
Riemann’s zeta function ζ(s) =

∑∞
n=1

1
ns , initially defined in the half plane Re(s)

> 1. In fact we prove the slightly more general functional relation for the Hurwitz
zeta function

ζ(s, a) =
∞∑
n=0

1
(n+ a)s

,

a close cousin of Riemann’s zeta function ζ(s). Here 0 < a ≤ 1 and Re(s) > 1.
Note that ζ(s, 1) = ζ(s). In this paper we give new, detailed proofs for clarity of
exposition and for guidance to the reader who is unfamiliar with the circle of ideas
related to the Riemann zeta function ζ(s).

Bernhard Riemann himself provided two proofs of his classical functional equa-
tion, which reads

ζ(1− s) =
Γ(s)
(2π)s

2 cos
(πs

2

)
ζ(s).(1)

His first proof uses the theta function and its Mellin transform. Riemann’s
second proof uses contour integration. Our proof uses neither technique. Rather,
we employ (and prove) the Lipschitz summation formula, a tool which is also useful
in the study of Eisenstein and Poincaré series in number theory. There is one more
important player in this story, namely the ‘periodized zeta function’

F (s, a) =
∞∑
n=1

e2πina

ns
,
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also defined initially for Re(s) > 1, with a an arbitrary real number. We first show
that Lipschitz summation follows very easily from the Poisson summation formula.
The main point of the paper is that Hurwitz’s relation

ζ(1 − s, a) =
Γ(s)
(2π)s

{
e−

πis
2 F (s, a) + e

πis
2 F (s,−a)

}
(2)

follows as a conceptually easy corollary of Lipschitz summation. Notice that when
a = 1 in Hurwitz’s relation, F (s, 1) = F (s,−1) = ζ(s), so that Riemann’s functional
equation (1) follows directly from Hurwitz’s relation (2) by using e−

πis
2 + e

πis
2 =

2 cos(πs2 ). As an added bonus, the meromorphic continuation of F (s, a) and of
ζ(s, a) into the whole complex plane also follows from our proofs (see the Corollaries
to Theorem 2).

For the sake of completeness, we first define the Fourier transform f̂ of a function
f :

f̂(m) =
∫ ∞
−∞

f(x)e2πixmdx.

If f is ‘sufficiently nice’, then its Fourier transform f̂ is well defined, and is known
among engineers to describe the ‘frequencies of f ’. Poisson summation says that∑

n∈Z
f(n) =

∑
m∈Z

f̂(m).

Here we can take the words ‘sufficiently nice’ to mean that f is continuous and
decays faster than any polynomial at infinity. The Poisson summation formula is a
very useful tool in Fourier analysis, number theory, and other areas of mathematics.
It is very easy to prove Poisson summation for well-behaved functions. This formula
provides a highly practical window into the frequency domain, and offers a powerful
symmetry between a function and its Fourier transform.

§1
We now state and prove the Lipschitz summation formula, discovered by Lip-

schitz in 1889 ([3]). Some proofs of this result in the literature are unnecessarily
long. Here we present a short proof, which uses only Poisson summation in a simple
way. Rademacher’s proof in [4, p. 77] is similar in spirit to our proof below.

Theorem 1.
∞∑
n=1

(n− α)s−1e2πiτ(n−α) =
Γ(s)

(−2πi)s
∑
m∈Z

e2πiαm

(τ +m)s
,(3)

where Re(s) > 1, τ ∈ H, the complex upper half plane, and 0 ≤ α < 1.

Proof. First we extend the sum on the left-hand side of (1) to the full group of
integers by multiplying by the characteristic function of the interval [α,∞). Equiv-
alently, define

f(x) =

{
(x− α)s−1e2πiτ(x−α) for x > α,

0 for x ≤ α.
Because 0 ≤ α < 1, it is evident that extending the summand by zero in this way
does not affect the discrete sum

∑∞
n=1 f(n) =

∑∞
n=1(n−α)s−1e2πiτ(n−α). Further-

more, note that the appearance of the factor (x− α)s−1 makes f(x) continuous at
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x = α in the range Re(s) > 1. This is in fact the reason we must first restrict s to
lie in this range. We now apply the Poisson summation formula to the left-hand
side of (1):

∞∑
n=1

(n− α)s−1e2πiτ(n−α) =
∑
n∈Z

f(n)

=
∑
m∈Z

f̂(m)

=
∑
m∈Z

∫ ∞
α

e2πimx(x− α)s−1e2πiτ(x−α)dx

=
∑
m∈Z

∫ ∞
0

e2πim(x+α)xs−1e2πiτxdx

=
∑
m∈Z

e2πimα

∫ ∞
0

xs−1e2πi(τ+m)xdx

=
1

(−2πi)s
∑
m∈Z

e2πimα

(τ +m)s

∫ ∞
0

ys−1e−ydy

=
Γ(s)

(−2πi)s
∑
m∈Z

e2πimα

(τ +m)s
,

and we are done.
To justify the steps, note that we can employ Poisson summation because f ∈

L1(R) and furthermore the proof shows that f̂ ∈ L1(R) when Re(s) > 1 (the
integral converges). We used the change of variable y = −2πi(τ + m)x in the
penultimate equality. The fact that τ ∈ H implies Re(y) > 0. Furthermore, the
integral along the real line equals the integral along the complex ray {(x, y)|y =
−2πi(m+ τ)x, and x ≥ 0}.

We expand on this point for the reader who is not familiar with this trick from
complex analysis. Consider a piece of ‘pie’ formed by the first ray {x|x > 0} going
away from the origin, then around a piece of a circle of radius R, and then back
toward the origin along the second ray {(x, y)|y = −2πi(m + τ)x, and x ≥ 0}.
When we let R → ∞, we observe that the contribution at ∞ from the integral is
zero because the integrand decays exponentially at infinity. Since the integrand is
an entire function of z, Cauchy’s theorem implies that the integral along the first
ray minus the integral along the second ray is zero.

Note that if we rewrite the Lipschitz summation formula in the following way, a
suggestive symmetry between s and 1− s becomes apparent:

e−2πiτα
∞∑
n=1

e2πiτn

(n− α)1−s =
Γ(s)

(−2πi)s
∑
m∈Z

e2πiαm

(τ +m)s
.

§2

We prove the Hurwitz functional relation in a straightforward way from Lipschitz
summation, relegating to a Lemma the technical details of taking a limit inside an
infinite sum. We adopt the standard convention that a sum over the integers which
omits 0 is written as

∑ ∗.
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Lemma. (a) Suppose 0 ≤ a < 1 and Re(s) < 0. Then

lim
τ→0

∞∑
n=1

(n− a)s−1e2πinτ =
∞∑
n=1

(n− a)s−1 = ζ(1− s, 1− a).

(b) Let 0 ≤ a < 1 and y > 0. Put

Sy(s) =
∗∑∞

−∞
e2πiam

{
(m+ iy)−s −m−s + siym−s−1

}
,

with the argument convention that −π < arg(w) ≤ π for w 6= 0. (Thus 0 <
arg(m+ iy) < π and arg(m) = 0 or π, according as m > 0 or m < 0.)

Then:
(i) Sy(s) converges absolutely for Re(s) > −1;
(ii) Sy(s) is holomorphic in s for Re(s) > −1;
(iii) for fixed s with Re(s) > −1,

lim
y→0+

Sy(s) = 0.

Remark. Note that both (a) and (b) hold in the strip −1 < Re(s) < 0.

Proof. (a) The proof is completely straightforward since the right-hand side con-
verges absolutely. It suffices to prove uniform convergence of the left-hand side for
y = Im(τ) ≥ 0. However,

∞∑
n=1

|(n− a)s−1e2πinτ | =
∞∑
n=1

(n− a)σ−1e−2πny

≤
∞∑
n=1

(n− a)σ−1 <∞,

for y ≥ 0, σ < 0. By the Weierstrass M-test the convergence is uniform, and the
result follows.

(b) The proof here is slightly more elaborate since absolute convergence of Sy(s)
for Re(s) > 1 requires verification. For m 6= 0, we have (m+iy)−s = m−s(1+ iy

m )−s,
valid by our argument convention. Thus, by the binomial expansion we have

(m+ iy)−s = m−s

1− siy
m

+
∞∑
j=2

(
−s
j

)(
iy

m

)j ,

for |m| > y. Writing s = σ + it, we have∣∣(m+ iy)−s −m−s + s(iy)m−s−1
∣∣ ≤ eπ|t||m|−2−σ

∞∑
j=2

∣∣∣∣(−sj
)∣∣∣∣ yj

|m|j−2
.(4)

It is elementary that
∣∣∣(−sj )∣∣∣ ≤ |s|j + 1, so the right-hand side of (4) is bounded

by

eπ|t||m|−2−σ

|s|2y2
∞∑
j=0

(
|s|yj
|m|

j
)

+ y2
∞∑
j=0

(
y

|m|

)j .

Assuming |m| > 2 max(y, |s|y), we can sum the geometric series to obtain∣∣(m+ iy)−s −m−s + iysm−s−1
∣∣ ≤ 2eπ|t||m|−2−σy2(|s|2 + 1).
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It follows that
∞∑
−∞

∗ ∣∣e2πiam
{

(m+ iy)−s −m−s + iysm−s−1
}∣∣ ≤ K(y, s)ζ(2 + σ) <∞,

where K(y, s) > 0, because σ > −1. This proves (i).
(ii) For this it suffices to prove that the convergence is uniform on compact

subsets of {s|σ = Re(s) > −1}. Suppose C is such a compact set. Then there exist
positive constants Kc, εc such that for all s ∈ C, |s| ≤ Kc and σ ≥ −1 + εc. For
s in C and |m| > 2max(y,Kcy), we find that the left-hand side of (4) is bounded
by 2eπKc |m|−1−εcy2(K2

c + 1). Since ζ(1 + εc) <∞, the Weierstrass M-test implies
uniform convergence on C.

(iii) For y sufficiently small, 2 max(y, |s|y) < 1, so

|Sy(s)| ≤ 2eπ|t|y2(|s|2 + 1)ζ(2 + σ).

Now let y → 0+ to get the result.

§3
We next prove the Hurwitz relation (2). This proof gives us some additional

information about the analytic continuation of the periodized zeta function defined
above by F (s, a) =

∑∞
n=1

e2πina

ns for Re(s) > 1.

Theorem 2.

e−
πis
2 F (s, a) + e

πis
2 F (s,−a)

can be continued analytically into Re(s) > −1. For s in the vertical strip −1 <
Re(s) < 0, and 0 < a ≤ 1, we have the Hurwitz relation

ζ(1 − s, a) =
Γ(s)
(2π)s

{e−πis2 F (s, a) + e
πis
2 F (s,−a)}.

Proof. Beginning with the Lipschitz summation formula (3), we subtract the first
two terms of the binomial expansion on the right-hand side:

(τ +m)−s = m−s − τsm−s−1 + · · · .

(This approach is inspired by the elegant paper of Harold Stark [6].) We obtain∑
m∈Z

∗e2πiαm
[
(τ +m)−s −m−s + sm−s−1τ

]
+

1
τs

=
(−2πi)s

Γ(s)

∞∑
n=1

(n− α)s−1e2πiτ(n−α) −
∑
m∈Z

∗ e
2πiαm

ms
+ τs

∑
m∈Z

∗ e
2πiαm

ms+1
,

for any 0 ≤ α < 1 and Re(s) > 1. Note that∑
m∈Z

∗ e
2πiαm

ms
= F (s, α) + e−πisF (s,−α)
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and put τ = iy, y > 0 to rewrite the above as∑
m∈Z

∗e2πiαm{(iy +m)−s −m−s + iysm−s−1}+
1

(iy)s
(5)

=
(−2πi)s

Γ(s)

∞∑
n=1

(n− α)s−1e−2πy(n−α) − {F (s, α) + e−πisF (s,−α)}

+iys{F (s+ 1, α)− e−πisF (s+ 1,−α)}.

Clearly the exponential sum on the right-hand side of (5) is entire in s. The
Lemma (part (b), ii) implies that the left-hand side of (5) is meromorphic in Re(s) >
−1, with at most a simple pole at s = 0. Therefore the remainder

− Γ(s)
(−2πi)s

{F (s, α) + e−πisF (s,−α)}+
iysΓ(s)
−2πi)s

{F (s+ 1, α)− e−πisF (s+ 1,−α)}

is meromorphic in Re(s) > −1, with at most a simple pole at s = 0. Since this is
true for any y > 0, it follows easily that

− Γ(s)
(−2πi)s

{F (s, α) + e−πisF (s,−α)}

is meromorphic in Re(s) > −1, with at most a simple pole of order 1 at s = 0.
Now restrict s to the vertical strip −1 < Re(s) < 0, let y → 0+, and apply the

Lemma to (5). For 0 ≤ α < 1 this yields

ζ(1− s, 1− α)− Γ(s)
(−2πi)s

{F (s, α) + e−πisF (s,−α)} = 0,(6)

valid in the strip −1 < Re(s) < 0. Putting a = 1− α in (6) gives the the Hurwitz
formula (2) for −1 < Re(s) < 0 and 0 < a ≤ 1, because F (s, 1 − a) = F (s,−a)
and F (s,−1 + a) = F (s, a). This completes the proof of Theorem 2.

Corollary 1. For 0 < a ≤ 1,

F (0,−a) + F (0, a) = −1.

Proof. Simply fix y > 0 and let s→ 0− in the relation (5) above. Because Γ(s) has
a pole at s = 0, the relation becomes 0 + 1 = 0−F (0, α)−F (0,−α), for 0 ≤ α < 1.
On the left-hand side we have taken the limit as s→ 0− inside the infinite sum by
virtue of Lemma(b, ii). The result follows if we put α = 1− a with 0 < a ≤ 1.

We have taken for granted that lims→0− F (s, a) is finite in the above remarks. To
see this note that lims→0−{F (s, a) + e−πisF (s,−a)} = −1, and that the left-hand
side of the last limit is independent of a. Thus it follows that

lim
s→0−

{F (s,−a) + e−πisF (s, a)} = −1,

and multiplying the former equality by eπis and subtracting from the latter equality
gives

lim
s→0−

(
eπis − e−πis

)
F (s, a) = 0.

Since eπis − e−πis has a simple zero at s = 0, F (s, a) cannot have a pole at s = 0.
Thus lims→0− F (s, a) is finite and the proof is complete.
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Corollary 2. (a) For 0 < a ≤ 1, the Hurwitz zeta function ζ(s, a) is holomorphic
in C except for a simple pole at s = 1, with residue 1.

(b) The relation (2) holds in all of C and has the alternative form

F (s, a) =
(2π)se−

πis
2

2iΓ(s)sin(πs)
{ζ(1− s, a)− eπisζ(1 − s, 1− a)}.

(c) For a /∈ Z, the periodized zeta function F (s, a) is an entire function of s.

Proof. (a) We begin with relation (2) in the strip −1 < Re(s) < 0. The left-hand
side of (2) is clearly holomorphic for Re(s) < 0, while Theorem 2 shows that the
right-hand side of (2) is holomorphic in Re(s) > −1 except for a possible simple
pole at s = 0 arising from Γ(s).

Identity (2) in the strip −1 < Re(s) < 0 provides a meromorphic continuation
of both ζ(1 − s, a) and the right-hand side of (2) into all of C, with (2) of course
continuing to hold in the entire plane. The form of (2) shows that ζ(1 − s, a) is
holomorphic in C− {0}.

By Corollary 1 the right-hand side of (2), without the Gamma factor, is −1 at
s = 0. On the other hand, Γ(s) has a simple pole with residue −1 at s = 0. Thus
ζ(s, a) has a simple pole with residue 1 at s = 1.

To prove (b), compare (2) with its alternative form

ζ(1 − s, 1− a) =
Γ(s)
(2π)s

{e−πis2 F (s,−a) + e
πis
2 F (s, a)}

to obtain

F (s, a) =
(2π)se−

πis
2

2iΓ(s)sin(πs)
{ζ(1− s, a)− eπisζ(1 − s, 1− a)}.

(c) The above relation shows that F (s, a) is holomorphic in C − {0, 1} and has
at most simple poles at s = 0 and 1. To see that these two potential poles do not
actually occur for a /∈ Z, first note that we have F (1, a) =

∑∞
n=1

e2πian

n , a convergent
Fourier series. (Alternatively, one can prove the convergence of

∑∞
n=1

e2πian

n by a
simple application of partial summation.) Therefore F (1, a) is finite and there is
no pole there. Finally, existence of a pole for F (s, a) at s = 0 is impossible, for we
showed in the proof of Corollary 1 that F (0, a) is finite. Hence F (s, a) is an entire
function of s.

Remark 1. Riemann’s proof of the functional equation for ζ(s) using the theta
function θ(τ) =

∑
n∈Z e

πiτn2
is conceptually more difficult than this proof (and

requires taking the Mellin transform to boot). For, here we apply the Lipschitz
summation formula with its linear exponential damping factor eπiτn, as opposed to
the quadratic exponential damping factor eπiτn

2
occuring in θ(τ).

Remark 2. One motivation for the proof of Theorem 2 is Harold Stark’s paper [6].
Using the binomial expansion and subtracting the first few terms, he shows that
the special values of Dirichlet L-functions and the Hurwitz zeta function are easily
obtained at the nonpositive integers. The class number formula of Dirichlet is also
recovered quickly in this highly recommended paper.

Remark 3. The functional equation for the Dirichlet L-functions also follows quite
easily from the Hurwitz formula (2), as Apostol shows in [1]. Thus our approach
simplifies the theory for the Dirichlet L-functions as well as the Hurwitz zeta func-
tion.
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