A SHORT PROOF THAT HYPERSPACES OF PEANO CONTINUA ARE ABSOLUTE RETRACTS

SERGEY ANTONYAN

(Communicated by Alan Dow)

Abstract. We give a short proof of Wojdyslawski’s famous theorem.

Theorem (Wojdyslawski [6]). Let X be a Peano continuum. Then the hyperspace 2^X of all nonempty compact subsets of X is an absolute retract for metric spaces.

This result is an essential step in the proof of the Curtis-Schori-West Hyperspace Theorem to the effect that 2^X is a Hilbert cube for any Peano continuum X (see, e.g., the book of van Mill [5, §8.4]). Wojdyslawski’s original proof is rather complicated [6]. A simpler proof was suggested later on by Kelley [4], which is, however, based on a difficult Lefschetz-Dugundji characterization of metric ANR’s (see [5, Theorem 5.2.1]). Yet another proof, also based on the Lefschetz-Dugundji characterization, can be found in [5, §5.3]. Our proof is elementary and it does not rely on the Lefschetz-Dugundji criterion.

Proof. Let d be any compatible metric on X and let d_H be the Hausdorff metric on 2^X. Assume that (Y, ρ) is a metric space, A is a closed subset of Y and f : A → 2^X is a continuous map. Following [3], choose a canonical cover ω of Y \ A in Y, that is to say: (1) ω is an open cover of Y \ A, locally finite in Y \ A; (2) for each neighborhood V of a point a ∈ A in Y there exists a neighborhood S of a in Y contained in V, such that every element U ∈ ω which meets S is contained in V. We note that the second condition implies that every neighborhood of any boundary point of A in Y contains infinitely many open sets in ω (see [2, Ch. III, §1]).

Let N(ω) denote the nerve of ω endowed with the CW topology. We will denote by p_U the vertex of N(ω) corresponding to U ∈ ω. Then according to [X], there exist a Hausdorff space Z and a continuous map μ : Y → Z with the following properties:

(a) Z as a set coincides with the disjoint union A ∪ N(ω);
(b) A is closed in Z and the restriction μ|A is the identical homeomorphism;
(c) Z \ A=N(ω) is taken with its CW topology and μ(Y \ A) ⊆ Z \ μ(A);
(d) a base of neighborhoods of a ∈ A in Z is determined by selecting a neighborhood W of a in Y and taking in Z the set W ∩ A together with the closed

Received by the editors October 29, 1999 and, in revised form, September 5, 2000.
2000 Mathematics Subject Classification. Primary 54B20; Secondary 54C55.
Key words and phrases. Peano continuum, absolute retract, hyperspace, canonical cover, nerve.
The author was partially supported by PAPIIT (UNAM) research grant IN105800.

©2001 American Mathematical Society

2187
star of every vertex \(p_U \) of \(\mathcal{N}(\omega) \) corresponding to a set \(U \in \omega \) with \(U \subset W \). This neighborhood is denoted by \(\tilde{W} \).

It is sufficient to prove that \(f \) extends to a continuous map \(F : Z \to 2^X \); then the map \(\Phi = F_H : Y \to 2^X \) will be the desired extension of \(f \).

Let \(\mathcal{N}_k(\omega) \) denote the \(k \)-skeleton of \(\mathcal{N}(\omega) \). First we extend \(f \) to a map \(f_0 : A \cup \mathcal{N}_0(\omega) \to 2^X \) as follows: in every set \(U \in \omega \) we select a point \(x_U \) and then choose a point \(a_U \in A \) such that \(p(x_U, a_U) < 2p(x_U, A) \). Set \(f_0(p_U) = f(a_U) \) and \(f_0(a) = f(a) \) for \(a \in A \). It is readily seen that \(f_0 \) is continuous. Now we will extend \(f_0 \) over each simplex of \(\mathcal{N}(\omega) \) and thus we obtain the desired map \(F \). Since \(2^X \) is a Peano continuum [5, Proposition 5.3.10], it is path-connected and locally path-connected by a well-known result of Mazurkiewicz (see [5, Theorem 5.3.13]). For any two points \(B, C \in 2^X \) we select a path \(l_{B,C} : [0, 1] \to 2^X \) such that \(l_{B,C}(0) = B, \ l_{B,C}(1) = C \) and

\[
diam l_{B,C}([0, 1]) < 2 \inf \{diam \gamma([0, 1]) : \gamma \text{ is a path from } B \text{ to } C\}.
\]

We now extend \(f_0 \) to a map \(f_1 : A \cup \mathcal{N}_1(\omega) \to 2^X \) by the rule: \(f_1(a) = f_0(a) \) for \(a \in A \) and \(f_1(t(p_U + (1-t)p_V)) = l_{f_0(p_U), f_0(p_V)}(t), \ 0 < t < 1 \). One needs to prove \(f_1 \) continuous only at points of \(A \). Let \(a \in A, \varepsilon > 0 \) and \(O(f(a), \delta) \) be the \(\delta \)-neighborhood of \(f(a) \) in \(2^X \). By the local path-connectedness of \(2^X \), there is a path-connected neighborhood \(Q \) of \(f_0(a) = f(a) \) contained in \(O(f(a), \varepsilon/8) \). By continuity of \(f_0 \), there exists a neighborhood of \(a \) in \(Z \) of the form \(W \) such that \(f_0(\tilde{W} \cap (A \cup \mathcal{N}_0(\omega))) \subset Q \). Then \(f_1(\tilde{W} \cap (A \cup \mathcal{N}_1(\omega))) \subset O(f(a), \varepsilon) \). Indeed, if \(z = t(p_U + (1-t)p_V) \in \tilde{W} \cap \mathcal{N}_1(\omega) \), then \(f_0(p_U), f_0(p_V) \) \(\in Q \); so \(Q \) contains a path \(\gamma \), connecting \(f_0(p_U) \) and \(f_0(p_V) \). Hence \(\gamma([0, 1]) < \varepsilon/2 \), which implies that \(\text{diam} \ l_{f_0(p_U), f_0(p_V)}([0, 1]) < \varepsilon/2 \). Then \(d_H(f_1(z), f_1(a)) < \varepsilon \) because \(f_1(z) \in l_{f_0(p_U), f_0(p_V)}([0, 1]) \).

Now suppose that a continuous extension \(f_k : A \cup \mathcal{N}_k(\omega) \to 2^X \) of \(f_{k-1}, k \geq 1 \) has already been constructed. We shall construct an extension \(f_{k+1} : A \cup \mathcal{N}_{k+1}(\omega) \to 2^X \) of \(f_k \). Let \(\sigma \) be any \((k+1)\)-dimensional simplex in \(\mathcal{N}(\omega) \). Let \(\mathbb{B}^{k+1} \) be the \((k+1)\)-dimensional Euclidean closed unit ball and \(S^k \) be its boundary sphere. We aim at applying the following well-known easy fact: for every \(k \geq 1 \) there exists a continuous function \(r : \mathbb{B}^{k+1} \to 2^{S^k} \) such that \(r(y) = \{y\} \) for all \(y \in S^k \) (see, e.g., [5, Proposition 5.3.11]). To this end, it is convenient to identify the pair \((\sigma, \partial \sigma)\) with \((\mathbb{B}^{k+1}, S^k)\). Then the preceding fact insures the existence of a continuous map \(r_\sigma : \sigma \to 2^{\partial \sigma} \) such that \(r_\sigma(z) = \{z\} \) for every \(z \in \partial \sigma \). The map \(g_\sigma : 2^{\partial \sigma} \to 2^X \) defined by \(g_\sigma(C) = \bigcup_{C \subset \sigma} f_k(c) \) is continuous [5, Corollary 5.3.7]. Then \(f_\sigma = g_\sigma r_\sigma : \sigma \to 2^X \) is a continuous extension of \(f_k|_{\partial \sigma} \). Now we set \(f_{k+1}(z) = f_\sigma(z) \) if \(z \in \sigma \), and \(f_{k+1}(a) = f_k(a) \) if \(a \in A \). Then \(f_{k+1} \) extends \(f_k \) and is continuous on \(\mathcal{N}_{k+1}(\omega) \).

We define the map \(F : Z \to 2^X \) as follows: \(F(z) = f_k(z) \) whenever \(z \in A \cup \mathcal{N}_k(\omega) \). Clearly, \(F \) is continuous on \(\mathcal{N}(\omega) \). Let us check its continuity at points of \(A \). Let \(a \in A \) and \(\varepsilon > 0 \). By continuity of \(f_1 \), there is a neighborhood of \(a \) in \(Z \) of the form \(\tilde{W} \) such that \(f_1(\tilde{W} \cap (A \cup \mathcal{N}_1(\omega))) \subset O(f(a), \varepsilon) \). We claim that \(F(\tilde{W}) \subset O(f(a), \varepsilon) \). We shall prove by induction on the dimension of \(\sigma \) that \(F(\sigma) \subset O(f(a), \varepsilon) \) for every simplex \(\sigma \subset \tilde{W} \). If \(\dim \sigma = 1 \), then \(F(\sigma) = f_1(\sigma) \subset O(f(a), \varepsilon) \). Assume that the claim is true for all simplices \(s \subset \tilde{W} \) with \(\dim s \leq k \). Let \(\sigma \subset \tilde{W} \), \(\dim \sigma = k + 1 \) and \(z \in \sigma \). As \(F(z) = f_{k+1}(z) = g_\sigma(r_\sigma(z)) \), we have \(F(z) = \bigcup_{C \subset \partial \sigma} f_k(c) \). But \(d_H(f_k(c), f(a)) < \varepsilon \) for all \(c \in \partial \sigma \), and in particular, for all \(c \in r_\sigma(z) \). This
yields that $d_H\left(\bigcup_{c \in \tau_r(z)} f_k(c), f(a)\right) < \varepsilon$, i.e., $d_H(F(z), f(a)) < \varepsilon$, completing the inductive step.

The reader can easily observe that the same proof serves also for Curtis’ theorem [1, Theorem 1.6] on growth hyperspaces $G \subset 2^X$, where X is any connected and locally continuum-connected metrizable space.

References

Departamento de Matemáticas, Facultad de Ciencias, UNAM, Circuito Exterior, C.U., 04510, México D.F., México

E-mail address: antonyan@servidor.unam.mx