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QUASILINEARITY BELOW THE 1ST EIGENVALUE

VICTOR L. SHAPIRO

(Communicated by David S. Tartakoff)

Abstract. This paper establishes the existence of two nontrivial weak so-
lutions for a quasilinear Dirichlet problem below the first eigenvalue via the
mountain pass theorem.

1. Introduction

Let Ω ⊂ RN be a bounded open connected set, N ≥ 1. Denote by Dα the
differential operator

∂|α|

∂x
α1
1 · · · ∂x

αN
N

where α = (α1 · · ·αN ) is a multi-index consisting of nonnegative integers, and |α| =∑N
i=1 αi denotes the order of Dα. In order to write nonlinear partial differential

operators in a convenient form, we introduce, as in [Br] the vector space Rsm

whose elements are of the form

ξm = {ξα : |α| ≤ m}
where m is a positive integer. For each u ∈ Wm,p

0 (Ω) , define ξm (u) (x) to be the
vector in Rsm given by

{Dα (u (x)) : |α| ≤ m} .

(Observe that D(0,... ,0)u = u.)
In this paper we study the 2mth-order quasilinear differential operator in gener-

alized divergence form

Q (u) =
∑
|α|≤m

(−1)|α|DαAα (x, ξm (u)) .(1)

Also we deal with the superlinear differential equation

Q (u) = |u|q−2 u+ λ |u|p−2 u(2)

where λ is a real number strictly less than the first eigenvalue in Wm,p
0 (Ω) and

1 < p < q where q has certain Sobolev restrictions. It will be clear that u = 0 is a
weak solution of (2) in Wm,p

0 (Ω) . We shall show in this paper that under certain
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further assumptions on Q, there are two more nontrivial weak solutions of (2) in
Wm,p

0 (Ω) . The result obtained here is to be viewed as a result in the same direction
as in [Sh], a previous paper on the first eigenvalue in the space Wm,p

0 (Ω) . It will
be clear, also, from the proof to be given that a g(x, u) could be added to the
right-hand side of (2), but we will leave these details to the interested reader.

The main thrust in this paper is to use the new idea of near p-homogeneity
(assumption (A-4) below) in conjunction with variational techniques to obtain a
new multiplicity result for a vast new set of equations not handled previously (e.g.,
examples (28) and (29) below). In particular, in (28) we get an equation involving
the mean curvature [GT, p. 357] when r = 1, which is near p-homogeneous but not
p-homogeneous.

There is a direct line from the theorem presented here using near p-homogeneity
through the mountain pass theorem [Ra, p. 7], through the work of Leray and
Lions (using (A-3) below, [LL, p. 103]) to the variational techniques of Euler and
Lagrange.

We will assume that Q has a variational structure in the sense that there exists
a potential function F : Ω×Rsm → R satisfying

(F-1) The map x → F (x, ξm) is measurable for each ξm ∈ Rsm , and the map
x→ F (x, ξm) is continuously differentiable for a.e. x ∈ Ω.

(F-2) There exist constants p and c1, with 1 < p < ∞ and c1 > 0, and a
nonnegative function h ∈ L1 (Ω) such that

|F (x, ξm)| ≤ h (x) + c1 |ξm|p

for a.e. x ∈ Ω and all ξm ∈ Rsm .
(F-3) F (x, 0) = 0 for a.e. x ∈ Ω, and for each α, with 0 ≤ |α| ≤ m,

∂F

∂ξα
(x, ξm) = Aα(x, ξm) for (x, ξm) ∈ Ω×Rsm .

The functions Aα : Ω×Rsm → R defined in (F-3) above will be assumed to satisfy
the Caratheodory conditions (i.e., Aα(x, ξm) is measurable in x for all ξm ∈ Rsm

and is continuous in ξm for a.e. x ∈ Ω) as well as the the following four conditions:
(A-1) There exists a constant c2, with c2 > 0, and a nonnegative function h̃ ∈

Lp
′
(Ω), where p′ = p/(p− 1) and p is as in (F-2) above, such that

|Aα(x, ξm)| ≤ h̃ (x) + c2 |ξm|p−1
, 0 ≤ |α| ≤ m,

for a.e. x ∈ Ω and all ξm ∈ Rsm .
(A-2) (Ellipticity) There exists a positive constant c0 such that∑

|α|≤m
Aα(x, ξm)ξα ≥ c0{

∑
|α|=m

|ξα|2}p/2

for a.e. x ∈ Ω and all ξm ∈ Rsm where p is as in (F-2).
(A-3) (Monotonicity) Let ξm = (ηm−1, ςm) be the division of ξm into its mth

order component and the corresponding (m − 1)st order terms ηm−1; i.e., ηm−1 =
{ξβ : 0 ≤ |β| ≤ m− 1} ∈ Rsm−1 , and ςm = {ξα : |α| = m} . Put Aα(x, ξm) =
Aα(x, ηm−1, ςm). Then for a.e. x ∈ Ω and each ηm−1 ∈ Rsm−1 ,∑

|α|=m
[Aα(x, ηm−1, ςm)−Aα(x, ηm−1, ς

∗
m)] (ςα − ς∗α) > 0 for ςm 6= ς∗m.
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(A-4) (Near p-homogeneity) For 0 ≤ |α| ≤ m,

(i) Aα(x, tξm)tξα ≤ |t|pAα(x, ξm)ξα, |t| ≥ 1,

(ii) Aα(x, tξm)tξα ≥ |t|pAα(x, ξm)ξα, |t| ≤ 1,

for t ∈ R, a.e. x ∈ Ω, and all ξm ∈ Rsm where p is as in (F-2).
We note, in particular, that (A-4)(ii) and the Caratheodory conditions imply

that

Aα(x, 0) = 0 for 0 ≤ |α| ≤ m and a.e. x ∈ Ω.

In the concluding section of this paper (i.e., §4), we shall give three examples of
a Q defined by (1) which meets (F-1)–(F-3) and (A-1)–(A-4) above.

We define the following semilinear Dirichlet form:

Q (u, v) =
∑
|α|≤m

∫
Ω

Aα(x, ξm (u))Dαv ∀u, v ∈ Wm,p
0 (Ω) .(3)

In view of (A-1) we see that Q is well defined on Wm,p
0 (Ω)×Wm,p

0 (Ω) .
Observe that by the definition of Q in (3) and (A-2) we get

Q (u, u) ≥ c0
∫

Ω

{
∑
|α|=m

|Dαu|2}p/2(4)

for all u ∈Wm,p
0 (Ω) . Then it follows from [Sh, Proposition 1, p. 1822] that

lim inf
‖u‖Lp→∞

Q (u, u)
‖u‖pLp

<∞.

So we define as in [Sh, p. 1821]

λ1 = lim inf
‖u‖Lp→∞

Q (u, u)
‖u‖pLp

.

We will establish the following result where p̃ = Np/(N −mp) if mp < N .

Theorem. Let 1 < p < ∞ and let Ω be an open bounded connected set. Assume
(F-1)–(F-3), and suppose Q(u) is given by (1) where Aα(x, ξm) satisfies (A-1)–
(A-4) for 0 ≤ |α| ≤ m. Suppose furthermore λ < λ1. Also let q be such that
p < q < p̃ for mp < N with p < q <∞ for mp ≥ N . Then there are at least two
nontrivial weak solutions of (2) in Wm,p

0 (Ω) .

We observe that if v ∈Wm,p
0 (Ω) by the Sobolev imbedding theorem [Ad, p. 98],

v ∈ Lq (Ω) where q is as stated in the theorem. Hence, if u also is in Wm,p
0 (Ω) ,

then |u|q−2
uv is in L1 (Ω) . Therefore, we say u is a weak solution of equation (2)

in Wm,p
0 (Ω) if

Q (u, v) =
∫

Ω

[
|u|q−2

u+ λ |u|p−2
u
]
v ∀v ∈Wm,p

0 (Ω) .(8)
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2. Fundamental lemmas

We shall make use of the mountain pass theorem [Ra, p. 7], henceforth designated
by (MPT), to establish our theorem. Let F be given as in (F-1)–(F-3). Define a
functional I : Wm,p

0 (Ω)→ R by

I (u) =
∫

Ω

[
F (x, ξm (u))− q−1 |u|q − λ |u|p /p

]
.(9)

Throughout this paper we will use the norm in Wm,p
0 (Ω) given by

‖u‖pm,p =
∑
|α|≤m

‖Dαu‖pLp ,(10)

where ‖·‖Lp denotes the Lp-norm. Also, we note that there are positive constants
c3 and c4 such that

c3 ‖u‖m,p ≤ ‖ξm (u)‖Lp ≤ c4 ‖u‖m,p ∀u ∈W
m,p
0 (Ω)(11)

and from Poincare’s inequality (see [GT, p. 164]), there is a positive constant c5
such that

‖ξm (u)‖pLp ≤ c5
∫

Ω

 ∑
|α|=m

|Dαu|2

p/2

∀u ∈ Wm,p
0 (Ω) .(12)

In order to invoke the (MPT), we shall need the fact that I defined in (9) satisfies
the (PS)-condition, [Ra, p. 3]. This will follow from the next two lemmas.

Lemma 1. Assume (F-1)–(F-3), (A-1)–(A-4), λ < λ1, that p and q are as in the
theorem, and that I is given by (9). Suppose that {un} is a sequence in Wm,p

0 (Ω)
satisfying (i) I(un) is uniformly bounded and (ii) I′(un) → 0 in Wm,p

0 (Ω)∗ as
n→∞. Then there exists a subsequence {unk} of {un} which is uniformly bounded
in Wm,p

0 (Ω) .

In the above, Wm,p
0 (Ω)∗ is understood to be the dual of Wm,p

0 (Ω) , i.e., the space
of bounded linear functionals sending Wm,p

0 (Ω) into R. Also, I′(u) is the Frechet
derivative of I(u).

Lemma 2. Assume (F-1)–(F-3), (A-1)–(A-4), λ < λ1, that p and q are as in the
theorem and that I is given by (9). Suppose that {un} is a uniformly bounded
sequence in Wm,p

0 (Ω) and is also such that I′(un) → 0 in Wm,p
0 (Ω)∗ as n → ∞.

Then {un} has a convergent subsequence; that is, there exist u ∈ Wm,p
0 (Ω) and a

subsequence {unk} satisfying limk→∞ ‖unk − u‖m,p = 0.

Since we are assuming throughout this paper that Ω is a bounded open connected
set and that p and q are as in the theorem, it follows from [Ad, p. 144] thatWm,p

0 (Ω)
is compactly imbedded in Lq (Ω). Using this fact, we see that a proof similar to the
one given in [RS, Lemma 4] (which hinges on (A-3), the monotonicity condition)
also gives the proof of Lemma 2 above; so we will not give the proof of Lemma 2
here and will leave the details of the proof of said lemma to the reader.

We now give the proof of Lemma 1. Suppose to the contrary that the conclusion
of the lemma is false. Then, we can suppose that

lim
n→∞

‖un‖m,p =∞.(13)



QUASILINEARITY BELOW THE 1ST EIGENVALUE 1959

We first show that under assumption (13), there exists a subsequence {unk}∞k=1

and a positive constant c6 such that

‖unk‖m,p ≤ c6 ‖unk‖Lp ∀k.(14)

If (14) does not hold, then

lim
n→∞

‖un‖Lp / ‖un‖m,p = 0.(15)

Suppose (15) holds. Then it follows from (3), (F-3), (A-1), and Fubini’s theorem
that ∫

Ω

F (x, ξm (u)) =
∫ 1

0

Q (tu, u)dt ≥ Q (u, u) /p(16)

where we have also used (A-4)(ii).
Next, we observe from (9), (3), (F-3), and (A-1), that

I ′(u) (v) =Q (u, v)−
∫

Ω

[|u|q−2
u+ λ |u|p−2

u]v ∀v ∈ Wm,p
0 (Ω) .(17)

As a consequence, we see from (9), (16), and (17) that

qI (un)− I′(un) (un) ≥ (q/p− 1) [Q (un, un)− λ ‖un‖pLp ] .
So if (15) holds, we see on dividing both sides of this last inequality by ‖un‖pm,p
and using the conditions in the hypothesis in Lemma 1 that

0 ≥ lim sup
n→∞

Q (un, un) / ‖un‖pm,p .(18)

But then (4) joined with (18) tells us that

lim
n→∞

∫
Ω

 ∑
|α|=m

|Dαun|2

p/2

/ ‖un‖pm,p

 = 0.

From (12) this fact in turn gives that

lim
n→∞

‖ξm (un)‖Lp / ‖un‖m,p = 0,

which is a direct contradiction of (11). Hence (15) is false, and (14) is indeed true.
Since 1 < p < q, we next obtain from (13) combined with (14) and Holder’s

inequality that

lim
nk→∞

‖unk‖Lq =∞.(19)

Likewise, we see from the conditions in the hypothesis of Lemma 1 combined with
(13) and (14) that

lim
nk→∞

[pI (unk)− I′(unk) (unk)]/ ‖unk‖Lp = 0.(20)

Next, we observe from (9), (16), and (17) that

pI (unk)− I′(unk) (unk) ≥ (1− p/q)
∫

Ω

|unk |
q
.

Dividing both sides of this last inquality by ‖unk‖Lp and passing to the limit as
nk →∞, we obtain from (20) that

lim
nk→∞

∫
Ω

|unk |
q
/{
∫

Ω

|unk |
p}1/p = 0.(21)
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But by Holder’s inequality, there is a positive constant c6 such that

c6{
∫

Ω

|u|p}1/p ≤ {
∫

Ω

|u|q}1/q ∀u ∈ Wm,p
0 (Ω) .(22)

Hence, we infer from (21) and (22) that

lim
nk→∞

{
∫

Ω

|unk |
q}1−1/q = 0.

This last fact is a direct contradiction of (19). Therefore (13) is not true, and there
is indeed a subsequence {unk}∞k=1 that is uniformly bounded in Wm,p

0 (Ω), which in
fact concludes the proof to Lemma 1.

3. Proof of the Theorem

Without loss of generality, we see from (2) that from the start we can assume that
λ1 > 0.We prove the theorem by observing that with I (u) for u ∈ Wm,p

0 (Ω) defined
by (9), the Frechet derivative I ′ (u) evaluated at v (i.e., I′ (u) (v)) is given by (17).
Consequently, if uo ∈Wm,p

0 (Ω) is a critical point of I—that is, if I′ (uo) (v) = 0 for
all v ∈Wm,p

0 (Ω)—it is clear from (17) and (8) that uo constitutes a weak solution
of (2) in Wm,p

0 (Ω) . Furthermore, from (F-3) and (9), it follows that I (0) = 0.
Hence, if we can show that the critical point uo is such that I (uo) 6= 0, we will
have that uo is a nontrivial weak solution of (2). Also, we observe from (A-4)(i)
and (ii) on setting t = −1 that

−Aα(x,−ξm)ξα = Aα(x, ξm)ξα for |α| ≤ m.
Hence, −Aα(x,−ξm) = Aα(x, ξm) for |α| ≤ m. Therefore from (3),

Q (−u, v) = −Q (u, v) ∀u, v ∈Wm,p
0 (Ω) ,

and we see from (17) that I ′ (−u) (v) = −I′ (u) (v) ∀u, v ∈ Wm,p
0 (Ω) . Therefore,

if uo is a nontrivial critical point of I, so is −uo. As a consequence, to prove the
theorem, we need only show the existence of one nontrivial critical point of I. We
shall do this by invoking the (MPT), [Ra, p. 7], and showing that the conditions in
the hypothesis of the theorem imply that I satisfies the conditions in the hypothesis
of the (MPT) which in turn implies that I possesses a nontrivial critical point.

To see that I defined by (9) does indeed satisfy the conditions in the hypothesis
of the (MPT), we take for our real Banach space E = Wm,p

0 (Ω) and observe from
(17), (F-1)–(F-3), (A-1) and (A-2), and the compactness of the imbedding of E in
Lq(Ω) that I ∈ C1 (E,R) . Also, it follows from Lemmas 1 and 2 that I satisfies
(PS) and from (9) and (F-3) that I (0) = 0.

To complete the proof of the theorem, we see from the (MPT) that it remains
to prove

∃ρ, γ > 0 such that I(u) ≥ γ for ‖u‖m,p = ρ;(23)

∃ψ ∈ E with ‖ψ‖m,p > ρ such that I(ψ) ≤ 0.(24)

To establish (23), we observe from (A-4) and (3) that

Q (ru, ru) ≤ |r|pQ (u, u) for |r| ≥ 1 and u ∈ E.(25)

Hence, from our definition of λ1 and (25), it follows that for u ∈ E,
Q (u, u)
‖u‖pLp

≥ lim inf
r→∞

Q (ru, ru)
‖ru‖pLp

≥ λ1.



QUASILINEARITY BELOW THE 1ST EIGENVALUE 1961

As a consequence of this last set of inequalities with λ1 = λ + 2δ where δ > 0, we
obtain from (9) and (16) that

I(u) ≥ δ

p
‖u‖pLp +

δ

λ1p
Q (u, u)− 1

q
‖u‖qLq ,

and hence from (4), (11), and (12) that

I(u) ≥ δ

p
‖u‖pLp +

δc0c
p
3

λ1pc5
‖u‖pm,p −

1
q
‖u‖qLq .(26)

Also, we have from the hypothesis on q and from [Ad, p. 98] that there exists c7 > 0
such that ‖u‖Lq ≤c7 ‖u‖m,p ∀u ∈W

m,p
0 (Ω) . Hence, we obtain from (26) that

I(u) ≥ δ

p
‖u‖pLp + [

δc0c
p
3

λ1pc5
− cq7

q
‖u‖q−pm,p ] ‖u‖pm,p .

Since q > p, it is clear that the expression in brackets in this last inequality is
positive for ‖u‖m,p sufficiently small, and (23) follows immediately from this obser-
vation.

To show that (24) is valid, take φ ∈ E such that ‖φ‖Lq 6= 0. Then it follows
from (9), the equality in (16), and (25) that for r ≥ 1,

I(rφ) ≤ rp
∫ 1

0

Q (tφ, φ) dt− rq
∫

Ω

|φ|q /q − λrp
∫

Ω

|φ|p /p.

Since ‖φ‖Lq 6= 0 and p < q, it is clear from this last inequality that limr→∞ I(rφ) =
−∞. Choose r0 > 0 such that I(r0φ) ≤ −1 and ‖r0φ‖m,p ≥ 2ρ. Set ψ = r0φ. Then
ψ satisfies (24), and (24) is indeed valid. Hence all the conditions in the hypothesis
of the (MTP) are met. Consequently, I possesses a nontrivial critical point, and
the proof of the theorem is complete.

4. Examples

We conclude this paper by presenting a few examples of quasilinear operators
Q (u) for which the theorem obtained here applies. The first example is for m = 1
with

Q (u) = −
∑
|α|=1

Dα


∑
|β|=1

∣∣Dβu
∣∣2k(p−2k)/2k

(Dαu)2(k−1)
Dαu

 ,(27)

where k is a positive integer and p > 1. For this case, the potential function
F : RN+1 → R is then

F (ξ1) =
1
p

(
∑
|α|=1

ξ2k
α )p/2k.

The second example is also for m = 1 with

Q (u) =
∑
|α|=1

(−1)|α|Dα[|ξ′1 (u)|p−2 +
(

1 + |ξ′1 (u)|2
)−(2−r)/2

]Dαu(28)

where p ≥ 2, 1 ≤ r < 2, and |ξ′1 (u)|2 =
∑
|α|=1 |Dαu|2 . The potential function

F : RN+1 → R in this case is

F (ξ1) =
1
p

(
∑
|α|=1

ξ2
α)p/2 +

1
r

(1 +
∑
|α|=1

ξ2
α)r/2 − 1

r
.
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For our final example, we let m be an arbitrary positive integer and set

Q (u) =
∑
|α|≤m

(−1)|α|Dα[cα |Dαu|p−2 + c∗α
|Dαu|2(k−1)(

1 + |Dαu|2k
)(2k−r)/2k ]Dαu(29)

where k is a positive integer, 1 ≤ r < 2k, and p ≥ 2k. Also, cα > 0 and c∗α ≥ 0 for
|α| ≤ m. The potential function F : Rsm → R is

F (ξm) =
∑
|α|≤m

[cα |ξα|p /p+ c∗α
(
1 + ξ2k

α

)r/2k
/r]−

∑
|α|≤m

c∗α/r.

In all of the above three cases, it is an easy matter to see that F meets (F-1)–
(F-3) and that Aα(ξm) = ∂F

∂ξα
(ξm) satisfies (A-1)–(A-4) where, in particular, for

the monotonicity condition (A-3) we make use of [KS, p. 16]. We also observe that
the last two examples actually are near p-homogeneous and not p-homogeneous.
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