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Abstract. We give explicit formulas for computing the Mordell-Weil ranks of
the elliptic surfaces Er : Y 2 = X3 +a(tr)X+b(tr) subject to some restrictions
on the surface E1.

Let π : E → P1 be a smooth complex relatively minimal elliptic surface with
section. For each positive integer r, define πr : Er → P1 to be the relatively
minimal compactification of the Neron model of the generic fiber of E ×P1 P1 of
the pullback of E by the morphism of P1 defined by t → tr. The main result of
[F1], [F2] is that under certain conditions on E, the rank of the Mordell-Weil group
of sections of Er is bounded independently of r. The purpose of this paper is to
use this result to compute or give explicit upper bounds on the rank of Er(P1) for
several examples.

We begin by showing that the following theorem is a consequence of the proof
given in [F1], [F2]:

Theorem 1. Let π : E → P1 be a nonisotrivial elliptic surface. For each t ∈ P1

let Et1 be the fiber of E over t, let ft be the conductor of Et1, and let et be the
Euler characteristic of Et1. For t = 0 and ∞, if Et1 is of type In or I∗n, let nt = n.
Otherwise, let nt = 0. Define

γ =
∑
t6=0,∞

(ft − et/6)− n0 + n∞
6

and assume that γ < 1. For each positive integer r let φr : P1 → P1 be the
morphism defined by φr(t) = tr, and let Er be the pullback of E via φr. Let
r = pm1

1 . . . pmnn . Then

rankEr(P1) ≤
∑

0≤li≤mi
p
li
i <2/(1−γ)

φ(pl11 . . . p
ln
n ).

It is not known whether the rank of an elliptic surface over P1 is bounded. The
largest known rank for an elliptic surface over P1 is 56 (see Example 1, and [Sh2],
[St]). We will see that we can often use a variant on the proof of Theorem 1 to get
an explicit formula for the rank of the surfaces Er, so that the technique outlined
below can be used to look for elliptic surfaces with large rank. We have the following
corollary to Theorem 1.

Received by the editors April 8, 1999.
1991 Mathematics Subject Classification. Primary 14J27, 11G05.

c©2001 American Mathematical Society

1877



1878 LISA A. FASTENBERG

Corollary. Let E be an elliptic surface satisfying the conditions of Theorem 1.
Then, for all r, rank(Er) ≤ 27720.

Proof. If γ < 1, then the largest possible value for γ is γ = 5/6, since ft, et and nt
are all integers. If γ = 5/6, then 2/(1− γ) = 12 and we have that

rank(Er) ≤
∑

φ(d) = 27720

where the sum is over all d, with d = 2l13l25l37l411l5, and l1 ∈ {0, 1, 2, 3}, l2 ∈
{0, 1, 2} and li ∈ {0, 1} for i = 3, 4, 5.

The proof of Theorem 1 is contained in the next section. In Sections 2, 3 and 4 we
show how to use the proof of Theorem 1 to improve on the bounds given there, and
in some cases to explicitly compute the Mordell-Weil group of the elliptic surfaces
Er/P1.

1. Proof of Theorem 1

In this section we review the proof of Theorem 2 in [F1], state some minor
corrections to the proof given there, and show how to extend it to a proof of Theorem
1. For additional details, see [F1]. Let E1 be an elliptic surface satisfying the
conditions of Theorem 1, and let fr,t, er,t be the conductor and Euler characteristic
of the fiber of Er over t ∈ P1 respectively. Note that fr,t is 0 if Etr is nonsingular, 1
if Etr is of multiplicative type, and 2 if Etr is of additive type. For a list of the Euler
characteristics of each of the possible Kodaira types, see Table (IV.3.1) of [Mi]. Let
k = m + 2a where m, a are the number of singular fibers of E1 over P1 \ {0,∞}
that have multiplicative or additive type respectively.

Recall that for any elliptic surface π : E → P1, we have that [CZ]

rankE = dimH1(P1, R1π∗Q) ∩H1,1(E,C).

For i+ j = 2, define H i,j
r = H1(P1, R1πr∗C) ∩Hi,j(Er ,C). Then

rankE1 = dimH1(P1, R1π1∗Q) ∩H1,1(E1,C)

≤ dimH1,1
1 = −2 +

∑
t∈P1

(f1,t − e1,t/6).(1.1)

We can bound the rank of Er as follows:

rankEr ≤ dim(H1,1
r ) = −2 +

∑
t∈P1

(fr,t − er,t/6)

= −2 +
∑

t∈P1\{0,∞}
(fr,t − er,t/6) + (fr,0 − er,0/6) + (fr,∞ − er,∞/6)

≤ 2 +
∑

t∈P1\{0,∞}
(rf1,t − re1,t/6)− rn0/6− rn∞/6 = 2 + rγ.

The second inequality follows from the fact that for t = 0,∞ we have fr,t ≤ 2 and
er,t ≥ rnt.

Now let σr be the automorphism of Er which is lifted from the automorphism
of P1 defined by T → ζrT , where ζr = e2πi/r. Then σr acts on the cohomology
group H1(P1, R1πr∗C), preserving both the Hodge decomposition and rational
cohomology. Let Nr be the pushforward of the normal bundle to a section of πr,
and Nr,t its stalk at t. For t = 0,∞, we have that tr(σr , Nr,t) = ζatr for some integer
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at, since σ has order r and Nr,t is one dimensional. In [F1] we show that

H1(P1, R1πr∗C)⊕H1(E(0)
r ,C)⊕H1(E(∞)

r ,C) = C[Z/rZ]⊕k,(1.2)

where C[Z/rZ], is the regular representation of Z/rZ. Furthermore, we show that,
for some integer l,

H0,2
r = C[Z/rZ]⊕l ⊕a0−1

j=a∞+1 Vj , H2,0
r = C[Z/rZ]⊕l ⊕−a∞−1

j=−ao+1 Vj ,(1.3)

where Vj is the 1-dimensional representation with eigenvalue ζjr . By assumption,
γ < 1, so that dim(H1,1

r ) < r. This means that up to a vector space of dimension
at most 4 the eigenvalues of σ on H1,1

r are

ζar , ζ
a+1
r , . . . , ζbr , ζ

c
r , ζ

c+1
r , . . . , ζdr ,

where a, b, c, d ∈ {a0,−a0, a∞,−a∞}, each with one dimensional eigenspace, and
no ζjr appearing more than once. (Notice that the list of eigenvalues given in [F1]
may not always be correct, depending on a0, a∞, but the final result is unchanged.)

If d|r, an eigenspace corresponding to a primitive dth root of unity, is in
H1(P1, R1π1∗Q)∩H1,1

r only if all eigenspaces corresponding to primitive dth roots
of unity are also in H1(P1, R1π1∗Q) ∩ H1,1

r . The following lemma, which is an
explicit and corrected version of the lemma on page 221 of [F1] (where there is
a missing factor of 2π in the first line of the proof), gives an upper bound for d,
independent of r, completing the proof of Theorem 1.

Lemma 1.4. Fix 0 ≤ s < t < 1. Let d be a positive integer and assume that all
primitive dth roots of unity have argument θ /∈ (2πs, 2πt). Then d = pl11 . . . p

ln
n

where the pi are distinct, and plii ≤ 2/(t− s).
Proof. We need to show that if pm > 2/(t− s) and pm divides d, then there exists
an integer c relatively prime to d with s ≤ c/d ≤ t. Let d = pmα with p - α. There
exists an integer β with s ≤ (αβ − 1)/d < (αβ + α − 1)/d ≤ t. Both αβ − 1 and
αβ +α− 1 are relatively prime to α and at least one of them is relatively prime to
p, so at least one of them is relatively prime to d.

2. Example 1: Semistable elliptic surfaces

Let E be a semistable elliptic surface with n singular fibers. From (1.1),

rankE ≤ −2 +
∑

(1− e1,t/6) = −2 + n−
∑

e1,t/6 = −2 + n− e/6
where e is the Euler characteristic of E and the sums are over all the singular fibers
of E. Since the left hand side is nonnegative, we have that n ≥ e/6 + 2. A simple
computation now shows that γ < 1 if and only if n = e/6 + 2 and E has singular
fibers at 0,∞. We have the following theorem:

Theorem 2.1. Let E → P1 be a semistable elliptic surface with Euler character-
istic e. Assume that E has e/6 + 2 singular fibers, including singular fibers at 0
and ∞. Then, for all r, rankEr(P1) = 0.

Proof. If the fiber of E at t = 0 or ∞ is of type In, n ≥ 0, then the fiber of Er at
t = 0 or ∞ respectively is of type Irn. This means that for any semistable elliptic
surface, e(Er) = re(E). Since the fibers at 0,∞ are singular, Er has re/6 + 2
singular fibers, so that

∑
fr,t = re/6 + 2. By (1.1),

rankEr(P1) ≤ −2 + re/6 + 2− (re/6) = 0

and the result follows.
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3. Example 2: An elliptic modular surface

To improve on the bounds given by Theorem 1 for the examples in this section
and the next, we will need to understand explicitly how σ acts onH0({0,∞}, R1π∗C)
and on Nt, the stalk at t of the pushforward of the normal bundle to a section of
πr, for t = 0,∞, so that we can compute the eigenvalues of σr on H1,1

r . In both
cases, we will need to study the behavior of σr locally at 0 and ∞.

Theorem 3.1. Let E be defined by the Weierstrass equation:

Y 2 = 4X3 − 27Xt− 27t.

Then

rankEr(P1) =
∑

φ(d)

where the sum is over all d|r such that d ∈ {1, 2, 3, 7, 8, 10, 12, 15, 18, 20, 42}.

Remark 1. The surface E is an elliptic modular surface associated to PSL2(Z) (see
[Sh1]), up to an isomorphism of the base. The formula was proved by Stiller [St] in
the case where r = 12n, in general, by Shioda [Sh2], and later, in the author’s Ph.D.
thesis [F2]. In [Si], Silverman provides an upper bound for the rank of the group
of sections of Er defined over a number field K, assuming that Tate’s Conjecture
is true for Er/K.

Remark 2. We will see below that γ = 5/6. Therefore, Theorem 1 shows that

rankEr(P1) ≤
∑

φ(d)

where the sum is over all d|r, with d = 2l13l25l37l411l5, and l1 ∈ {0, 1, 2, 3}, l2 ∈
{0, 1, 2} and li ∈ {0, 1} for i = 3, 4, 5.

Proof. We first note that E has a singular fiber of type I1 at t = 1, a singular fiber
of type II at t = 0, and a singular fiber of type III∗ at t =∞. Thus γ = 5/6, and
E satisfies the conditions of Theorem 1. Now fix r. Then a Weierstrass equation
for Er is

Y 2 = 4X3 − 27Xtr − 27tr.

We begin by determining the local information that we will need at t = 0. Write
r = 6k+k′, where 0 ≤ k′ ≤ 5. Dividing through by t6k we obtain the local minimal
Weierstrass equation for Er at t = 0:

Y 2
0 = 4X3

0 − 27X0t
2k+k′ − 27tk

′
,

where X0 = X/t2k, Y0 = Y/t3k. If k′ 6= 0, then E0
r , the fiber of Er at t =

0, is a singular elliptic curve, and Er has additive reduction at t = 0, so that
dimH1(E0

r ,C) = 0. For k′ = 0, E0
r is a nonsingular elliptic curve with Weierstrass

equation Y 2
0 = 4X3

0 − 27, and dimH1(E0
r ,C) = 2; so to determine the eigenvalues

of σ on H1(E0
r ,C), we need only consider this case.

When k′ = 0, σ|E0
r

has order 6, so for i 6= 0 mod 6 an application of the Lefschetz
fixed point formula gives that

2∑
j=0

(−1)jtr(σi, Hj(E0
r ,C)) = #{points of E0

r fixed by σi}.
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Since tr(σi, Hj(E0
r ,C)) = 1 for j = 0, 2,

tr(σi, H1(E0
r ,C)) = 2−#{points fixed by σi}.

For i = 1, 5 mod 6, σi fixes one point of E0
r , 3 points if i = 2, 4 mod 6 and 4

points if i = 3 mod 6. Combining this information yields that the eigenvalues of
σ on H1(E0

r ,C) are ρ and ρ5 where ρ = ζkr is a 6th root of unity.
We now compute the eigenvalues of σ on H1,1

r . By (1.2) and (1.3), we need only
find ζatr = tr(σ,Nt), for t = 0,∞, and the eigenvalues of σ on H1(Er,0,C) and
H1(Er,∞,C) computed above. We note that (see [Mi], p. 23) N ' R1πr∗OEr , so
locally at t,

Nt ' (R1π∗OEr )t ' H1(Etr,OEtr ) ' H
0(Etr,OEtr)

∗.

This implies that tr(σ,Nt) is just the conjugate of the action of σ on Etr.
To determine how σ acts on Etr, we need only determine how σ acts at a smooth

point of Etr. On the fiber at t = 0, the point (0, 1, 0) is smooth for all k′, with local
affine coordinates (x0, z0) = (X0/Y0, Z0/Y0) and local parameter x0. We have that

σ(X0, Y0, Z0) = σ(X/t2k, Y/t3k, Z) = (ζ−2k
r X0, ζ

−3k
r Y0, Z0) = (ζkrX0, Y0, ζ

3k
r Z0),

so σ acts on the fiber E0
r as multiplication by ζkr , and a0 = −k = 5k + k′.

Now let r = 4l+ l′, 0 ≤ l′ ≤ 3. The computations at t = 1/T =∞ can be carried
out exactly as above. The results are summarized in Tables 3.2 and 3.3.

Table 3.2. Local information for Er at t = 0.

k′ Local minimal Eigenvalues of σ a0

Weierstrass equation on H1(Er,0,C)

0 Y 2
0 = 4X3

0 − 27t2k − 27 ρ, −ρ 5k

1 Y 2
0 = 4X3

0 − 27t2k+1 − 27t - 5k + 1

2 Y 2
0 = 4X3

0 − 27t2k+2 − 27t2 - 5k + 2

3 Y 2
0 = 4X3

0 − 27t2k+3 − 27t3 - 5k + 3

4 Y 2
0 = 4X3

0 − 27t2k+4 − 27t4 - 5k + 4

5 Y 2
0 = 4X3

0 − 27t2k+5 − 27t5 - 5k + 5

Table 3.3. Local information for Er at t =∞.

l′ Local minimal Eigenvalues of σ a∞
Weierstrass equation on H1(Er,∞,C)

0 Y 2
∞ = 4X3

∞ − 27X∞ − 27T 2l i, −i 3l

1 Y 2
∞ = 4X3

∞ − 27T 3X∞ − 27T 2 - 3l

2 Y 2
∞ = 4X3

∞ − 27T 2X∞ − 27T 4 - 3l+ 1

3 Y 2
∞ = 4X3

∞ − 27TX∞ − 27T 6 - 3l+ 2

From Tables 3.2 and 3.3, we see that the eigenvalues of σr on H1,1
r are exactly

those rth roots of unity, eiθ, where

θ /∈ [π/3, π/2] ∪ [3π/2, 5π/3].
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Thus, we have that

rankEr(P1) ≤
∑

φ(d)

where the sum is over all d|r such that either d = 1, or if 0 < c < d and (c, d) = 1,
then c/d /∈ [1/6, 1/4]; equivalently, the sum is over all d|r such that

d ∈ {1, 2, 3, 7, 8, 10, 12, 15, 18, 20, 42}.
To show that the above inequality is in fact an equality, note that k = 1 implies

that H1(P1, R1πr∗C) = C[Z/rZ]. In particular, none of the eigenvalues of σr
on H1,1

r are eigenvalues on H2,0
r or H0,2

r . If d|r, an eigenspace corresponding to a
primitive dth root of unity is in H1(P1, R1π1∗Q)∩H1,1

r if and only if all eigenspaces
corresponding to primitive dth roots of unity are also in H1(P1, R1π1∗Q)∩H1,1

r and
the above inequality is an equality. This completes the proof of Theorem 2.1.

4. Example 3: Kummer surfaces with Picard number 20

Let A be an abelian surface, ι the involution of A defined by ι(x) = −x, and
E the resolution of the quotient surface A/〈1, ι〉. Then E is called the Kummer
surface associated to A, which is an elliptic K3 surface. Shioda and Inose [ShI]
have shown that every Kummer surface with Picard number 20 is the Kummer
surface associated to the product of two isogenous elliptic curves with complex
multiplication, and conversely. (They also show that ‘half’ of all K3 surfaces with
Picard number 20 are Kummer surfaces.) If the abelian surface is not the product
Cω×Cω, where Cω is the elliptic curve with fundamental periods 1 and ω = e2πi/3,
they show that there exists an elliptic pencil on the associated Kummer surface
E → P1 which has a section and singular fibers of type II∗, I∗1 , I

∗
1 . If we assume

that the fiber at 0 is of type I∗1 and the fiber at ∞ is of type II∗, then γ =
(2− 7/6)− 1/6 = 2/3, and Theorem 1 applies. We have the following theorem:

Theorem 4.1. Let E1 → P1 be an elliptic surface with singular fibers of type I∗1
at 0 and of type II∗ at ∞, and exactly one other singular fiber, which is of type I∗1 .
Then

rankEr(P1) ≤
∑
d|r

d∈{2,3,4,5}

φ(d) ≤ 9.

Remark. Since γ = 2/3, Theorem 1 shows that

rankEr(P1) ≤
∑

0≤l1≤2,
0≤l2,l3≤1

φ(2l13l25l3) ≤ 44.

Proof. First note that k = 2 since away from 0,∞ there is one singular fiber which
is of additive type. At t = 0, a local minimal Weierstrass equation for E0

1 is given
by

Y 2 = X3 + t2A0(t)X + t3B0(t)

where A0(0) 6= 0, B0(0) 6= 0 and ordt=0(4A0(t)3 + 27B0(t)2) = 1. If r is even, the
curve E0

r is semistable of type Ir , and if r is odd, E0
r is of type I∗r . Let r = 2k+ k′

where k′ = 0 or 1. A computation similar to that given in the previous section
shows that a0 = k if r is even, and a0 = k + 1 if r is odd.

If r is odd, then E0
r is of additive type so that dimH1(E0

r ,C) = 0. If r is even,
then dim(H1(E0

r ,C)) = 1, and σr has order 2. The eigenvalue of σr on H1(E0
r ,C)
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must therefore be either 1 or −1. We will see below that 1 is an eigenvalue of
both H0,2

r and H2,0
r . Since k is 2, it follows from (1.2) that the eigenvalue of σr on

H1(E0
r ,C) must be −1.

A local minimal Weierstrass equation for E∞1 is

Y 2 = X3 + T 4A∞(T )X + T 5B∞(T )

where B∞(0) 6= 0. Letting r = 6l+ l′ with 0 ≤ l′ ≤ 5, we find that a∞ = 5l+ l′− 1
if l′ 6= 0 and a∞ = 5l if l′ = 0. Also, if l′ = 0, the eigenvalues of σ on H1(E∞r ,C)
are ρ and ρ5. If l′ 6= 0, then dim(H1(E∞r ,C)) = 0.

Combining the above information with (1.2) and (1.3), we see that the eigenval-
ues of σ on H1,1

r are ζ−a∞r , . . . , ζa∞r if 6|r, and ζ−a∞+1
r , . . . , ζa∞−1

r if 6|r. In particu-
lar, the eigenvalues of σ on H1,1

r are the rth roots of unity, eiθ, with θ /∈ [5π/3, π/3],
and Theorem 4.1 follows.
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