Symmetric numerical semigroups with arbitrary multiplicity and embedding dimension
HTML articles powered by AMS MathViewer
- by J. C. Rosales
- Proc. Amer. Math. Soc. 129 (2001), 2197-2203
- DOI: https://doi.org/10.1090/S0002-9939-01-05819-1
- Published electronically: January 17, 2001
- PDF | Request permission
Abstract:
We construct symmetric numerical semigroups $S$ for every minimal number of generators $\mu (S)$ and multiplicity $\mathsf {m}(S)$, $2\leq \mu (S)\leq \mathsf {m}(S)-1$. Furthermore we show that the set of their defining congruence is minimally generated by $\mu (S)(\mu (S)-1)/2-1$ elements.References
- Valentina Barucci, David E. Dobbs, and Marco Fontana, Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Mem. Amer. Math. Soc. 125 (1997), no. 598, x+78. MR 1357822, DOI 10.1090/memo/0598
- H. Bresinsky, On prime ideals with generic zero $x_{i}=t^{n_{i}}$, Proc. Amer. Math. Soc. 47 (1975), 329–332. MR 389912, DOI 10.1090/S0002-9939-1975-0389912-0
- H. Bresinsky, Symmetric semigroups of integers generated by $4$ elements, Manuscripta Math. 17 (1975), no. 3, 205–219. MR 414559, DOI 10.1007/BF01170309
- Jürgen Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175–193. MR 269762, DOI 10.1007/BF01273309
- Ernst Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748–751. MR 265353, DOI 10.1090/S0002-9939-1970-0265353-7
- László Rédei, The theory of finitely generated commutative semigroups, Pergamon Press, Oxford-Edinburgh-New York, 1965. Translation edited by N. Reilly. MR 0188322
- J. C. Rosales and P. A. García-Sánchez, Finitely generated commutative monoids, Nova Science Publishers, Inc., Commack, NY, 1999. MR 1694173
- J. C. Rosales, An algorithmic method to compute a minimal relation for any numerical semigroup, Internat. J. Algebra Comput. 6 (1996), no. 4, 441–455. MR 1414349, DOI 10.1142/S021819679600026X
- J. C. Rosales, On symmetric numerical semigroups, J. Algebra 182 (1996), no. 2, 422–434. MR 1391591, DOI 10.1006/jabr.1996.0178
- J. C. Rosales and P. A. García-Sánchez, On numerical semigroups with high embedding dimension, J. Algebra 203 (1998), no. 2, 567–578. MR 1622807, DOI 10.1006/jabr.1997.7341
- J. C. Rosales, Numerical Semigroups with Apéry sets of unique expression, J. Algebra 226 (2000), 479–487.
Bibliographic Information
- J. C. Rosales
- Affiliation: Departamento de Álgebra, Universidad de Granada, E-18071 Granada, Spain
- Email: jrosales@ugr.es
- Received by editor(s): July 29, 1999
- Received by editor(s) in revised form: December 9, 1999
- Published electronically: January 17, 2001
- Additional Notes: This paper was supported by the project DGES PB96-1424.
The author would like to thank P. A. García-Sánchez, J. I. García-García and the referee for their comments and suggestions. - Communicated by: Wolmer V. Vasconcelos
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 2197-2203
- MSC (2000): Primary 20M14, 20M05, 20M30, 13H10
- DOI: https://doi.org/10.1090/S0002-9939-01-05819-1
- MathSciNet review: 1823900