ON THE COMMUTANT OF OPERATORS OF MULTIPLICATION BY UNIVALENT FUNCTIONS

B. KHANI ROBATI AND S. M. VAEZPOUR

(Communicated by Joseph A. Ball)

Abstract. Let B be a certain Banach space consisting of continuous functions defined on the open unit disk. Let $\phi \in B$ be a univalent function defined on D, and assume that M_ϕ denotes the operator of multiplication by ϕ. We characterize the structure of the operator T such that $M_\phi T = TM_\phi$. We show that $T = M_\phi$ for some function φ in B. We also characterize the commutant of M_ϕ under certain conditions.

1. Introduction

Let B be a Banach space consisting of continuous functions defined on the open unit disk D such that B satisfies conditions (1)–(6).

1. $1 \in B$, $zB \subset B$.

2. For every $\lambda \in D$ the evaluation functional at λ, $e_\lambda : B \to C$, given by $f \mapsto f(\lambda)$, is bounded.

3. $\dim \ker(M_\lambda - \lambda)^* = 1$ for every $\lambda \in D$.

4. If $f \in B$ and f has an analytic extension to a neighborhood of $\lambda \in D$, then $\frac{f(\lambda)}{z-\lambda} \in B$. Also for every $\lambda \in D$ the subspace of B consisting of those functions in B that have analytic extension to a neighborhood of λ is dense in B.

5. For every $f \in B$ the function \bar{f} defined by $\bar{f}(\lambda) = f(-\lambda)$ is in B and $\|\bar{f}\| = \|f\|$.

6. If $f \in B$ and $|f(z)| > 1/2$ for every $\lambda \in D$, then $\frac{1}{f}$ is a multiplier of B.

Throughout this article by a Banach space of continuous functions B we mean one satisfying the above conditions. A complex valued function ϕ defined on D is called a multiplier of B if $\phi B \subset B$, i.e., ϕf is in B for every f in B, and the set of all multipliers of B is denoted by $\mathcal{M}(B)$. As it is shown in $[B]$ each multiplier ϕ is bounded on B. Given a multiplier ϕ, let M_ϕ, defined by $M_\phi(f) = \phi f$, denote the operator of multiplication by ϕ. By the closed graph theorem M_ϕ is bounded. The algebra of all bounded operators on B is denoted by $L(B)$. Let $X \in L(B)$ be a bounded operator on B and $X M_\lambda = M_\lambda X$. It is easy to see that $X = M_\phi$ for some function $\varphi \in \mathcal{M}(B)$.

Received by the editors December 16, 1999.

2000 Mathematics Subject Classification. Primary 47B35; Secondary 47B38.

Key words and phrases. Commutant, multiplication operators, Banach space of analytic functions, univalent function, bounded point evaluation.

Research of the first author was partially supported by a national grant (no. 522).

©2001 American Mathematical Society
Throughout this article $\{M_\lambda\}'$ denotes the set of all bounded linear operators X on B such that $M_\lambda X = X M_\lambda$, i.e., the commutant of M_λ. Assume $T \in B^*$ and $f \in B$. We denote the value of T at f by $\langle f, T \rangle$. We define $M_\phi : B \to B$ by $M_\phi(f) = \varphi f$. By the closed graph theorem M_ϕ is bounded.

In what follows we present some examples of such spaces.

Examples.

a) Cole and Gamelin [2] proved that if A is a T-invariant algebra on a compact set K, then for each $\lambda \in K$, ran($M_\lambda - \lambda$) is dense in $\ker \lambda$. Hence dim $\ker(M_\lambda^* - \lambda) = 1$ for every $\lambda \in K$. Also they have shown that every T-invariant algebra satisfies condition (4). Therefore the algebra of all continuous functions defined on D, i.e., $C(D)$, is a Banach space of continuous functions.

b) The disk algebra $A(D)$ which is the algebra of all continuous functions on the closure of disk that are analytic on D.

c) The Bergman space of analytic functions defined on the unit disk $L_1^2(D)$ for $1 \leq p \leq \infty$.

d) The spaces D_α of all functions $f(z) = \sum f(n)z^n$, holomorphic in D, for which

$$\|f\|^2 = \sum (n+1)^\alpha |f(n)|^2 < \infty$$

for every $\alpha \geq 1$ or $\alpha < 0$.

e) The analytic Lipschitz spaces A_α for $0 < \alpha < 1$, i.e., the space of all analytic functions defined on D that satisfy a Lipschitz condition of order α.

f) The subspace A^α of A_α consisting of functions f in A_α for which

$$\lim_{z \to w} \frac{|f(z) - f(w)|}{|z - w|^{1/\alpha}} = 0.$$

g) The classical Hardy spaces H^p for $1 \leq p \leq \infty$.

Shields and Wallen [6] studied the commutant of the operator M_z on the Hilbert spaces of analytic functions. By a slight change in their methods one can obtain the commutant of M_z on the Banach spaces of analytic functions. The commutant of a Toeplitz operator on certain Hilbert spaces of functions was studied by many mathematicians. See for example [1, 7, 8]. Cuckovic in [3] investigated the commutant of M_{z^n} on the Bergman space $L_2^2(D)$. Seddighi and Vaezpour [4] have shown that under certain conditions on the reproducing kernels of a functional Hilbert spaces every operator S essentially commuting with M_z and commuting with M_{z^n} for some $n > 1$ is a multiplication operator. Also the commutant of M_z on a Banach space of analytic functions and the commutant of M_{z^n} on a certain Hilbert space of functions were studied in [4]. In section 2 of this article we characterize the commutant of M_ϕ for a univalent function $\phi \in M(B) \cap A(D)$ on a Banach space of continuous functions and we investigate the commutant of M_ϕ^2 under certain conditions.

2. The main results

Lemma 2.1. If $\phi \in M(B)$ and $T \in \{M_\phi\}'$, then $T^*(e_\lambda) \in \ker(M_\phi - \phi(\lambda))^*$ for every $\lambda \in D$.

Proof. Let $f \in B$. We have $\langle f, M_\phi^* T^*(e_\lambda) \rangle = \langle f, T^* M_\phi^*(e_\lambda) \rangle = \langle M_\phi T(f), e_\lambda \rangle = \phi(\lambda) T(f) = \phi(\lambda) (T(f), e_\lambda) = \phi(\lambda) (f, T^*(e_\lambda)) = (f, \phi(\lambda) T^*(e_\lambda)) = (f, \phi(\lambda) T^*(e_\lambda))$; hence $M_\phi^* T^*(e_\lambda) = \phi(\lambda) T^*(e_\lambda)$ which implies that $T^*(e_\lambda) \in \ker(M_\phi - \phi(\lambda))^*$.

\[\Box\]
Theorem 2.2. Let \(\phi \in \mathcal{M}(B) \cap A(D) \) be a univalent map. If \(T \in \{ M_\phi \}' \), then \(T = M_\psi \) for some function \(\psi \in \mathcal{M}(B) \).

Proof. Let \(\lambda \in D \). We show that \(\text{ran}(M_\phi - \phi(\lambda)) = \ker e_\lambda \). It is easy to see that \(\text{ran}(M_\phi - \phi(\lambda)) \subset \ker e_\lambda \).

To show the converse, let \(\phi - \phi(\lambda) = (z - \lambda)g(z) \) by the properties of \(B, \ g \in B \). Since \(\phi \) is univalent, \(g(z) \neq 0 \) on \(D \) and hence \(\frac{1}{g} \) is in \(\mathcal{M}(B) \). Now assume that \(f \in \ker e_\lambda \) so \(f(\lambda) = 0 \). Since the subspace of \(B \) consisting of functions which are analytic in a neighborhood of \(\lambda \) is dense in \(B \), it follows that there is a sequence \(\{ f_n \} \) of functions in this subspace such that \(f_n \) tends to \(f \). Now assume that \(f_n - f_n(\lambda) = (z - \lambda)g_n \) by property (4) of \(B, \ g_n \in B \). Hence
\[
\frac{f_n - f_n(\lambda)}{g_n(z)} = (\phi - \phi(\lambda))\frac{g_n(z)}{g(z)},
\]
which implies that \((f_n - f_n(\lambda)) \in \text{ran}(M_\phi - \phi(\lambda)) \). Since \(f_n - f_n(\lambda) \) tends to \(f \) in \(B \), it follows that \(f \in \text{ran}(M_\phi - \phi(\lambda)) \). Now since \((M_\phi - \phi(\lambda))^+(e_\lambda) = (M_\phi - \phi(\lambda))^+(e_\lambda) = 0 \) and \(\dim \ker(M_\phi - \phi(\lambda))^+ = 1 \), we conclude that \(T^+(e_\lambda) = \psi(\lambda)e_\lambda \) for some constant \(\psi(\lambda) \). Therefore, we have
\[
T(f)(\lambda) = \langle T(f), e_\lambda \rangle = \langle f, T^+(e_\lambda) \rangle = \psi(\lambda)\langle f, e_\lambda \rangle = \psi(\lambda)f(\lambda).
\]
Hence \(T(f) = \psi f \) for every \(f \in B \) and the proof is complete. \(\square \)

In the remainder of this section we investigate the commutant of \(M_\phi \) for some univalent function \(\phi \).

Corollary 2.3. If \(\phi \in \mathcal{M}(B) \cap A(D) \) is a univalent map such that \(\phi(D) \) has no distinct points which are symmetric with respect to the origin, then \(\{ M_\phi \}' = \{ M_\psi : \psi \in \mathcal{M}(B) \} \). In particular if \(|\lambda| > 1 \), then \(\{ M_{\frac{1}{\lambda} - \lambda} \}' = \{ M_\psi : \psi \in \mathcal{M}(B) \} \).

Remark. In the proofs of Lemma 2.1 and Theorem 2.2 we did not use property (5) of Banach space \(B \). Also \(D \) can be replaced by every bounded open set \(G \).

Lemma 2.4. Let \(\phi \) be a univalent odd function in \(\mathcal{M}(B) \cap A(D) \), \(S \in L(B) \) and \(SM_\phi = -M_\phi S \). Then there exists \(\psi \in \mathcal{M}(B) \) such that \(S = M_\psi \).

Proof. Since \(T^*M_\phi = -M_\phi T^* \) by a similar argument as in the proof of Lemma 2.1, we have \(M_\phi T^*(e_\lambda) = -\phi(\lambda)T^*(e_\lambda) \); hence \((M_\phi + \phi(\lambda))^+(T^*(e_\lambda)) = 0 \) which yields \(T^*(e_\lambda) \in \ker(M_\phi + \phi(\lambda))^+ \). By the proof of Theorem 2.2, \(e_{-\lambda} \) spans \(\ker(M_\phi + \phi(\lambda))^+ \) so \(T^*(e_\lambda) = \psi(\lambda)e_{-\lambda} \) for some constant \(\psi(\lambda) \). Now
\[
\langle T(f), e_\lambda \rangle = \langle f, T^*(e_{0}) \rangle = \psi(\lambda)\langle f, e_{-\lambda} \rangle = \psi(\lambda)f(-\lambda)
\]
which implies that \(T = M_\psi \). Also \(T(f) = \psi f \); hence \(\psi \in \mathcal{M}(B) \). \(\square \)

Theorem 2.5. Let \(\phi \in \mathcal{M}(B) \cap A(D) \) be an odd univalent map. Let \(S \in \{ M_\phi \}' \) and \(SM_\phi - M_\phi S \) be a compact operator. Then there is some \(\Psi \in \mathcal{M}(B) \) such that \(S = M_\Psi \).

Proof. We have \((SM_\phi - M_\phi S)M_\phi = (SM_\phi - M_\phi SM_\phi) = M_\phi S - M_\phi SM_\phi = -M_\phi (SM_\phi - M_\phi S) \). Hence, by Lemma 2.4 there exists some \(\psi \in B \) such that \(SM_\phi - M_\phi S = M_\psi \). Now we show that \(M_\psi \) is compact. Let the operator \(T \) be
defined by $T(f) = \hat{f}$; it is obvious that T is continuous. Now we have $M_{\psi}(f) = M_{\psi}T(f)$ for every $f \in \mathcal{B}$ and so M_{ψ} is compact and by the Fredholm alternative theorem $\psi = 0$. This implies that $M_{\psi}S = SM_{\psi}$; hence $S \in \{M_{\phi}\}'$ and we conclude that $S = M_{\Psi}$ for some $\Psi \in \mathcal{M}(\mathcal{B})$.

Theorem 2.6. Let $\phi \in \mathcal{M}(\mathcal{B}) \cap A(D)$ be an odd univalent map. Suppose T is an operator in $\{M_{\phi}\}'$ and let $TM_{\phi} + M_{\phi}T$ be a compact operator. Then there exists a $\Psi \in \mathcal{M}(\mathcal{B})$ such that $T = M_{\Psi}$.

Proof. We have $(TM_{\phi} + M_{\phi}T)M_{\phi} = M_{\phi}(TM_{\phi} + M_{\phi}T)$; hence by Theorem 2.2, there is a function $\psi \in \mathcal{M}(\mathcal{B})$ such that $TM_{\phi} + M_{\phi}T = M_{\psi}$. Since $TM_{\phi} + M_{\phi}T$ is compact, we have $\psi = 0$, so $M_{\psi}T = -M_{\phi}T$. Now, by Lemma 2.4, there is $\Psi \in \mathcal{M}(\mathcal{B})$ such that $T = M_{\Psi}$.

Theorem 2.7. Let $\phi \in \mathcal{M}(\mathcal{B}) \cap A(D)$ be a univalent map of D onto D such that $f \circ \phi$ and $f \circ \phi^{-1}$ are in \mathcal{B} for every $f \in \mathcal{B}$. Let $S \in \{M_{\phi}\}'$. If polynomials are dense in \mathcal{B}, then $S(f) = \Phi f + \psi \frac{f + (f \circ \phi^{-1}) \circ \Phi}{2\phi}$, where $S(1) = \Phi$ and $(SM_{\phi} - M_{\phi}S)(1) = \psi$.

Proof. We define $T : \mathcal{B} \rightarrow \mathcal{B}$ by $T(f) = f \circ \phi^{-1}$. Clearly $T \in L(\mathcal{B})$ with inverse $T^{-1}(f) = f \circ \phi$. Since $M_{\phi}T = TM_{\phi}$, by induction we have $M_{\phi^n}T = TM_{\phi^n}$ for every positive integer n. Since $SM_{\phi^n} = M_{\phi^n}S$, it follows that $S(T^{-1}M_{\phi^n}T = T^{-1}M_{\phi^n}ST$ and so $TST^{-1} \in \{M_{\phi^n}\}'$. Now by a similar argument as in the proof of [1] Theorem 2.6] we have

$$TST^{-1}(f) = TST^{-1}(1)f + (TST^{-1}M_{\phi} - M_{\phi}TST^{-1})(1)\frac{f + \hat{f}}{2\phi}.$$ If $S(1) = \Phi$ and $(SM_{\phi} - M_{\phi}S)(1) = \psi$, then $TST^{-1}(1) = \Phi \circ \phi^{-1}$. Since

$$T(SM_{\phi} - M_{\phi}S)T^{-1} = TST^{-1}M_{\phi}TST^{-1},$$

it follows that $(TST^{-1}M_{\phi} - M_{\phi}TST^{-1})(1) = \psi \circ \phi^{-1}$. Hence

$$S(f) = T^{-1}TST^{-1}T(f) = \Phi f + \psi \frac{f + (f \circ \phi^{-1}) \circ \Phi}{2\phi}.$$

Remark. If ϕ in Theorem 2.7 is an odd function, then $S(f) = \Phi f + \psi \frac{f + \hat{f}}{2\phi}$.

REFERENCES

Department of Mathematics, Shiraz University, Shiraz 71454, Iran
E-mail address: Khani@math.susc.ac.ir

Department of Mathematics, Yazd University, Yazd, Iran