An asymmetric Putnam–Fuglede theorem for unbounded operators
HTML articles powered by AMS MathViewer
- by Jan Stochel
- Proc. Amer. Math. Soc. 129 (2001), 2261-2271
- DOI: https://doi.org/10.1090/S0002-9939-01-06127-5
- Published electronically: March 20, 2001
- PDF | Request permission
Abstract:
The intertwining relations between cosubnormal and closed hyponormal (resp. cohyponormal and closed subnormal) operators are studied. In particular, an asymmetric Putnam–Fuglede theorem for unbounded operators is proved.References
- Kevin Clancey, Seminormal operators, Lecture Notes in Mathematics, vol. 742, Springer, Berlin, 1979. MR 548170, DOI 10.1007/BFb0065642
- Takayuki Furuta, On relaxation of normality in the Fuglede-Putnam theorem, Proc. Amer. Math. Soc. 77 (1979), no. 3, 324–328. MR 545590, DOI 10.1090/S0002-9939-1979-0545590-2
- Takayuki Furuta, An extension of the Fuglede-Putnam theorem to subnormal operators using a Hilbert-Schmidt norm inequality, Proc. Amer. Math. Soc. 81 (1981), no. 2, 240–242. MR 593465, DOI 10.1090/S0002-9939-1981-0593465-4
- Jan Janas, On unbounded hyponormal operators, Ark. Mat. 27 (1989), no. 2, 273–281. MR 1022281, DOI 10.1007/BF02386376
- Jan Janas, On unbounded hyponormal operators. II, Integral Equations Operator Theory 15 (1992), no. 3, 470–478. MR 1155715, DOI 10.1007/BF01200330
- J. Janas, On unbounded hyponormal operators. III, Studia Math. 112 (1994), no. 1, 75–82. MR 1307601, DOI 10.4064/sm-112-1-75-82
- Kyung Hee Jin, On unbounded subnormal operators, Bull. Korean Math. Soc. 30 (1993), no. 1, 65–70. MR 1217370
- R. L. Moore, D. D. Rogers, and T. T. Trent, A note on intertwining $M$-hyponormal operators, Proc. Amer. Math. Soc. 83 (1981), no. 3, 514–516. MR 627681, DOI 10.1090/S0002-9939-1981-0627681-X
- Sch\B{o}ichi Ōta, Closed linear operators with domain containing their range, Proc. Edinburgh Math. Soc. (2) 27 (1984), no. 2, 229–233. MR 760619, DOI 10.1017/S0013091500022331
- Sch\B{o}ichi Ōta, A quasi-affine transform of an unbounded operator, Studia Math. 112 (1995), no. 3, 279–284. MR 1311703, DOI 10.4064/sm-112-3-279-284
- Sch\B{o}ichi Ōta and Konrad Schmüdgen, On some classes of unbounded operators, Integral Equations Operator Theory 12 (1989), no. 2, 211–226. MR 986595, DOI 10.1007/BF01195114
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- C. R. Putnam, Ranges of normal and subnormal operators, Michigan Math. J. 18 (1971), 33–36.
- M. Radjabalipour, Ranges of hyponormal operators, Illinois J. Math. 21 (1977), no. 1, 70–75. MR 448140, DOI 10.1215/ijm/1256049502
- Mehdi Radjabalipour, On majorization and normality of operators, Proc. Amer. Math. Soc. 62 (1976), no. 1, 105–110 (1977). MR 430851, DOI 10.1090/S0002-9939-1977-0430851-6
- Zoltán Sebestyén, On ranges of adjoint operators in Hilbert space, Acta Sci. Math. (Szeged) 46 (1983), no. 1-4, 295–298. MR 739046
- Joseph G. Stampfli and Bhushan L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 25 (1976), no. 4, 359–365. MR 410448, DOI 10.1512/iumj.1976.25.25031
- Joseph G. Stampfli and Bhushan L. Wadhwa, On dominant operators, Monatsh. Math. 84 (1977), no. 2, 143–153. MR 458225, DOI 10.1007/BF01579599
- J. Stochel, Lifting strong commutants of unbounded subnormal operators, preprint 1999.
- Joachim Weidmann, Linear operators in Hilbert spaces, Graduate Texts in Mathematics, vol. 68, Springer-Verlag, New York-Berlin, 1980. Translated from the German by Joseph Szücs. MR 566954, DOI 10.1007/978-1-4612-6027-1
- Takashi Yoshino, Remark on the generalized Putnam-Fuglede theorem, Proc. Amer. Math. Soc. 95 (1985), no. 4, 571–572. MR 810165, DOI 10.1090/S0002-9939-1985-0810165-7
Bibliographic Information
- Jan Stochel
- Affiliation: Instytut Matematyki, Uniwersytet Jagielloński, Kraków, Poland
- Email: stochel@im.uj.edu.pl
- Received by editor(s): November 1, 1999
- Published electronically: March 20, 2001
- Additional Notes: This work was supported by KBN grant # 2P03A 041 10.
- Communicated by: Joseph A. Ball
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 2261-2271
- MSC (2000): Primary 47B20; Secondary 47B15
- DOI: https://doi.org/10.1090/S0002-9939-01-06127-5
- MathSciNet review: 1823908
Dedicated: Dedicated to Professor F. H. Szafraniec on the occasion of his sixtieth birthday