Polynomials in $\mathbb {R}[x,y]$ that are sums of squares in $\mathbb {R}(x,y)$
HTML articles powered by AMS MathViewer
- by David B. Leep and Colin L. Starr PDF
- Proc. Amer. Math. Soc. 129 (2001), 3133-3141 Request permission
Abstract:
A positive semidefinite polynomial $f \in \mathbb {R}[x,y]$ is said to be $\Sigma (m,n)$ if $f$ is a sum of $m$ squares in $\mathbb {R}(x,y)$, but no fewer, and $f$ is a sum of $n$ squares in $\mathbb {R}[x,y]$, but no fewer. If $f$ is not a sum of polynomial squares, then we set $n=\infty$. It is known that if $m \leq 2$, then $m=n$. The Motzkin polynomial is known to be $\Sigma (4,\infty )$. We present a family of $\Sigma (3,4)$ polynomials and a family of $\Sigma (3, \infty )$ polynomials. Thus, a positive semidefinite polynomial in $\mathbb {R}[x,y]$ may be a sum of three rational squares, but not a sum of polynomial squares. This resolves a problem posed by Choi, Lam, Reznick, and Rosenberg.References
- Artin, E., “Über die Zerlegung definiter Funktionen in Quadrate,” Abh. Math. Sem. Hamburg Univ. 5 (1927), 100-115.
- J. W. S. Cassels, W. J. Ellison, and A. Pfister, On sums of squares and on elliptic curves over function fields, J. Number Theory 3 (1971), 125–149. MR 292781, DOI 10.1016/0022-314X(71)90030-8
- M. D. Choi, T. Y. Lam, and B. Reznick, Sums of squares of real polynomials, $K$-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992) Proc. Sympos. Pure Math., vol. 58, Amer. Math. Soc., Providence, RI, 1995, pp. 103–126. MR 1327293
- M. D. Choi, T. Y. Lam, B. Reznick, and A. Rosenberg, Sums of squares in some integral domains, J. Algebra 65 (1980), no. 1, 234–256. MR 578805, DOI 10.1016/0021-8693(80)90248-3
- M. R. Christie, Positive definite rational functions of two variables which are not the sum of three squares, J. Number Theory 8 (1976), no. 2, 224–232. MR 412162, DOI 10.1016/0022-314X(76)90104-9
- Larry J. Gerstein, A remark on the quadratic analogue of the Quillen-Suslin theorem, J. Reine Angew. Math. 337 (1982), 166–170. MR 676050, DOI 10.1515/crll.1982.337.166
- Hilbert, D., “Über die Darstellung definiter Formen als Summe von Formenquadraten,” Math. Ann. 32 (1888), 342- 350 (= Ges. Abh. 2, 154-161).
- Kenneth Hoffman and Ray Kunze, Linear algebra, 2nd ed., Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR 0276251
- M.-A. Knus and M. Ojanguren, Modules and quadratic forms over polynomial algebras, Proc. Amer. Math. Soc. 66 (1977), no. 2, 223–226. MR 498534, DOI 10.1090/S0002-9939-1977-0498534-4
- T. Y. Lam, The algebraic theory of quadratic forms, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1973. MR 0396410
- Landau, E., “Über die Darstellung definiter Funktionen durch Quadrate,” Math. Ann. 62 (1906), 272-285.
- Macé, O., Sommes de trois carrés en deux variables et représentation de bas degré pour le niveau des courbes réelles, Ph.D. Thesis, L’Université de Rennes I, (2000).
- T. S. Motzkin, The arithmetic-geometric inequality, Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965) Academic Press, New York, 1967, pp. 205–224. MR 0223521
- Albrecht Pfister, Zur Darstellung definiter Funktionen als Summe von Quadraten, Invent. Math. 4 (1967), 229–237 (German). MR 222043, DOI 10.1007/BF01425382
Additional Information
- David B. Leep
- Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027
- Email: leep@ms.uky.edu
- Colin L. Starr
- Affiliation: Department of Mathematics and Statistics, Box 13040 SFA Station, Stephen F. Austin State University, Nacogdoches, Texas 75962-3040
- Email: starr@math.sfasu.edu
- Received by editor(s): May 19, 1999
- Received by editor(s) in revised form: March 8, 2000
- Published electronically: April 9, 2001
- Additional Notes: This work formed part of the second author’s dissertation.
- Communicated by: Lance W. Small
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 3133-3141
- MSC (2000): Primary 11E25, 12D15
- DOI: https://doi.org/10.1090/S0002-9939-01-05927-5
- MathSciNet review: 1844985