Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A note on extensions of asymptotic density
HTML articles powered by AMS MathViewer

by A. Blass, R. Frankiewicz, G. Plebanek and C. Ryll–Nardzewski PDF
Proc. Amer. Math. Soc. 129 (2001), 3313-3320 Request permission

Abstract:

By a density we mean any extension of the asymptotic density to a finitely additive measure defined on all sets of natural numbers. We consider densities associated to ultrafilters on $\omega$ and investigate two additivity properties of such densities. In particular, we show that there is a density $\nu$ for which $L_{1}(\nu )$ is complete.
References
Similar Articles
Additional Information
  • A. Blass
  • Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
  • MR Author ID: 37805
  • Email: ablass@math.lsa.umich.edu
  • R. Frankiewicz
  • Affiliation: Institute of Mathematics, Polish Academy of Sciences, 00-950 Warsaw, Poland
  • Email: rf@impan.gov.pl
  • G. Plebanek
  • Affiliation: Institute of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50–218 Wrocław, Poland
  • MR Author ID: 239421
  • Email: grzes@math.uni.wroc.pl
  • C. Ryll–Nardzewski
  • Affiliation: Institute of Mathematics, Wrocław Technical University and Institute of Mathematics, Polish Academy of Sciences, 51-617 Wrocław, Poland
  • Email: crn@graf.im.pwr.wroc.pl
  • Received by editor(s): June 29, 1999
  • Received by editor(s) in revised form: March 17, 2000
  • Published electronically: April 9, 2001
  • Additional Notes: The first-named author was partially supported by NSF grant DMS–9505118
    The other authors were partially supported by KBN grant 2P03A 018 13.
  • Communicated by: Dale Alspach
  • © Copyright 2001 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 129 (2001), 3313-3320
  • MSC (2000): Primary 28A12; Secondary 03E05, 03E35, 11B05
  • DOI: https://doi.org/10.1090/S0002-9939-01-05941-X
  • MathSciNet review: 1845008