Non-tangential limits, fine limits and the Dirichlet integral
HTML articles powered by AMS MathViewer
- by Stephen J. Gardiner PDF
- Proc. Amer. Math. Soc. 129 (2001), 3379-3387 Request permission
Abstract:
Let $B$ denote the unit ball in $\mathbb {R}^{n}.$ This paper characterizes the subsets $E$ of $B$ with the property that $\sup _{E}h=\sup _{B}h$ for all harmonic functions $h$ on $B$ which have finite Dirichlet integral. It also examines, in the spirit of a celebrated paper of Brelot and Doob, the associated question of the connection between non-tangential and fine cluster sets of functions on $B$ at points of the boundary.References
- D. H. Armitage and M. Goldstein, Tangential harmonic approximation on relatively closed sets, Proc. London Math. Soc. (3) 68 (1994), no. 1, 112–126. MR 1243837, DOI 10.1112/plms/s3-68.1.112
- F. F. Bonsall, Domination of the supremum of a bounded harmonic function by its supremum over a countable subset, Proc. Edinburgh Math. Soc. (2) 30 (1987), no. 3, 471–477. MR 908454, DOI 10.1017/S0013091500026869
- M. Brelot and J. L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 395–415 (French). MR 196107
- Lennart Carleson, Selected problems on exceptional sets, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0225986
- E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5
- Stephen J. Gardiner, Sets of determination for harmonic functions, Trans. Amer. Math. Soc. 338 (1993), no. 1, 233–243. MR 1100694, DOI 10.1090/S0002-9947-1993-1100694-2
- Stephen J. Gardiner, Harmonic approximation, London Mathematical Society Lecture Note Series, vol. 221, Cambridge University Press, Cambridge, 1995. MR 1342298, DOI 10.1017/CBO9780511526220
- W. K. Hayman and T. J. Lyons, Bases for positive continuous functions, J. London Math. Soc. (2) 42 (1990), no. 2, 292–308. MR 1083447, DOI 10.1112/jlms/s2-42.2.292
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027
- Y. Mizuta, On the behaviour of harmonic functions near a hyperplane, Analysis 2 (1982), 203-218.
- A. Stray, Simultaneous approximation in the Dirichlet space, in: Advances in Multivariate Approximation, ed. W. Haussmann et al., Wiley, Berlin, 1999, pp. 307-319.
- Hans Wallin, On the existence of boundary values of a class of Beppo Levi functions, Trans. Amer. Math. Soc. 120 (1965), 510–525. MR 188473, DOI 10.1090/S0002-9947-1965-0188473-7
Additional Information
- Stephen J. Gardiner
- Affiliation: Department of Mathematics, University College Dublin, Dublin 4, Ireland
- MR Author ID: 71385
- ORCID: 0000-0002-4207-8370
- Email: stephen.gardiner@ucd.ie
- Received by editor(s): December 17, 1999
- Received by editor(s) in revised form: April 3, 2000
- Published electronically: April 25, 2001
- Communicated by: Albert Baernstein II
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 3379-3387
- MSC (2000): Primary 31B25
- DOI: https://doi.org/10.1090/S0002-9939-01-05952-4
- MathSciNet review: 1845016