Finite groups embeddable in division rings
HTML articles powered by AMS MathViewer
Abstract:
In a tour de force in 1955, S. A. Amitsur classified all finite groups that are embeddable in division rings. In particular, he disproved a conjecture of Herstein which stated that odd-order emdeddable groups were cyclic. The smallest counterexample turned out to be a group of order 63. In this note, we prove a non-embedding result for a class of metacyclic groups, and present an alternative approach to a part of Amitsur’s results, with an eye to “de-mystifying" the order 63 counterexample.References
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- John Dauns, A concrete approach to division rings, R & E, vol. 2, Heldermann Verlag, Berlin, 1982. MR 671253
- Julian Bonder, Über die Darstellung gewisser, in der Theorie der Flügelschwingungen auftretender Integrale durch Zylinderfunktionen, Z. Angew. Math. Mech. 19 (1939), 251–252 (German). MR 42, DOI 10.1002/zamm.19390190409
- Charles Ford, Finite groups and division algebras, Enseign. Math. (2) 19 (1973), 313–327. MR 342561
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Nathan Jacobson, Basic algebra. I, 2nd ed., W. H. Freeman and Company, New York, 1985. MR 780184
- A. Shokrollahi: Packing unitary matrices, Colloquium talk, University of California, Berkeley, Calif., November, 2000.
Additional Information
- T. Y. Lam
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- MR Author ID: 109495
- Email: lam@math.berkeley.edu
- Received by editor(s): March 13, 2000
- Published electronically: April 17, 2001
- Communicated by: Lance W. Small
- © Copyright 2001 copyright retained by the author
- Journal: Proc. Amer. Math. Soc. 129 (2001), 3161-3166
- MSC (2000): Primary 12E15, 16Kxx, 20B05; Secondary 20D20, 20B07, 16U60
- DOI: https://doi.org/10.1090/S0002-9939-01-05961-5
- MathSciNet review: 1844988