Revêtements et isométries pour la métrique infinitésimale de Kobayashi
HTML articles powered by AMS MathViewer
- by Jean-Pierre Vigué
- Proc. Amer. Math. Soc. 129 (2001), 3279-3284
- DOI: https://doi.org/10.1090/S0002-9939-01-05977-9
- Published electronically: March 29, 2001
- PDF | Request permission
Abstract:
In this paper, we prove that, under some hypothesis on the domains, if a holomorphic mapping $f:D_{1}\longrightarrow D_{2}$ is an isometry for the Kobayashi infinitesimal metric at a point, it is a covering map. In the case $D_{1} = D_{2}$, we prove, in certain cases, that $f$ is an analytic isomorphism.References
- Larbi Belkhchicha, Caractérisation des isomorphismes analytiques sur la boule-unité de $\textbf {C}^n$ pour une norme, Math. Z. 215 (1994), no. 1, 129–141 (French). MR 1254816, DOI 10.1007/BF02571702
- H. Cartan. Sur les fonctions de plusieurs variables complexes. L’itération des transformations intérieures d’un domaine borné. Math. Z. 35 (1932), p. 760-773.
- Tullio Franzoni and Edoardo Vesentini, Holomorphic maps and invariant distances, Notas de Matemática [Mathematical Notes], vol. 69, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 563329
- Ian Graham, Holomorphic mappings into strictly convex domains which are Kobayashi isometries at one point, Proc. Amer. Math. Soc. 105 (1989), no. 4, 917–921. MR 961406, DOI 10.1090/S0002-9939-1989-0961406-0
- Marvin J. Greenberg, Lectures on algebraic topology, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0215295
- Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1993. MR 1242120, DOI 10.1515/9783110870312
- Shoshichi Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), no. 3, 357–416. MR 414940, DOI 10.1090/S0002-9904-1976-14018-9
- L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), no. 4, 257–261 (English, with Russian summary). MR 690838, DOI 10.1007/BF02201775
- H. Royden and P. Wong. Carathéodory and Kobayashi metrics on convex domains. Preprint (1983).
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Jean-Pierre Vigué, Caractérisation des automorphismes analytiques d’un domaine convexe borné, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 4, 101–104 (French, with English summary). MR 756530
- Jean-Pierre Vigué, Sur la caractérisation des automorphismes analytiques d’un domaine borné, Portugal. Math. 43 (1985/86), no. 4, 439–453 (1987) (French). MR 911450
- H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193–233. MR 224869, DOI 10.1007/BF02392083
Bibliographic Information
- Jean-Pierre Vigué
- Affiliation: UPRES A 6086 Groupes de Lie et Géométrie, SP2MI, Mathématiques, Université de Poitiers, BP 30179, 86962 Futuroscope Cedex, France
- Email: vigue@mathlabo.univ-poitiers.fr
- Received by editor(s): March 10, 2000
- Published electronically: March 29, 2001
- Communicated by: Steven R. Bell
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 3279-3284
- MSC (2000): Primary 32F45
- DOI: https://doi.org/10.1090/S0002-9939-01-05977-9
- MathSciNet review: 1845003